Journal of Optoelectronics · Laser, Volume. 35, Issue 12, 1337(2024)
Brain tumor segmentation algorithm based on multi-scale features
[1] [1] WU M, YE H L, WU Y, et al. Brain tumor image segmentation based on grouped convolution[J]. Journal of Physics: Conference Series, 2022,2278(1): 012042.
[3] [3] Roerdink J B T M, Meijster A. The watershed transform: Definitions, algorithms and parallelization strategies[J]. Fundamenta Informaticae, 2000,41(1-2): 187-228.
[4] [4] VINCENT L, SOILLE P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,1991,13(6): 583-598.
[5] [5] PU M, HUANG Y, LIU Y, et al. Edter: Edge detection with transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-24, 2022, New Orleans, LA, USA. New York: IEEE, 2022: 1402-1412.
[9] [9] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition, June 7-12, 2015, Boston, MA, USA. New York: IEEE, 2015: 3431-3440.
[10] [10] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted InterventioN-MICCAI 2015: 18th International Conference, October 5-9, 2015, Munich, Germany. Berlin: Springer, 2015: 234-241.
[11] [11] DONG H, YANG G, LIU F, et al. Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks[C]//Medical Image Understanding and Analysis: 21st Annual Conference, July 11-13, 2017, Edinburgh, UK. Berlin: Springer, 2017: 506-517.
[12] [12] KONG X, SUN G, WU Q, et al. Hybrid pyramid u-net model for brain tumor segmentation[C]//Intelligent Information Processing IX: 10th IFIP TC 12 International Conference, IIP 2018, October 19-22, 2018, Nanning, China. Berlin: Springer, 2018: 346-355.
[13] [13] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: Learning where to look for the pancreas[EB/OL].(2018-04-11)[2023-04-28]. https://arxiv.org/abs/1804.03999.
[14] [14] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//European Conference on Computer Vision (ECCV), September 8-14, 2018, Munich, Germany. Berlin: Springer, 2018: 801-818.
[15] [15] LI X, SUN X, MENG Y, et al. Dice loss for data-imbalanced NLP tasks[C]//58th Annual Meeting of the Association for Computational Linguistics. July 5-10, 2020, Online. Stroudsburg: ACL, 2020: 465-476.
[16] [16] WANG Y, MA X, CHEN Z, et al. Symmetric cross entropy for robust learning with noisy labels[C]//IEEE/CVF International Conference on Computer Vision, October 27-November 2, 2019, Seoul, Korea (South). New York: IEEE, 2019: 322-330.
Get Citation
Copy Citation Text
SU Fu, MA Ao, LI Qin. Brain tumor segmentation algorithm based on multi-scale features[J]. Journal of Optoelectronics · Laser, 2024, 35(12): 1337
Category:
Received: Apr. 28, 2023
Accepted: Dec. 31, 2024
Published Online: Dec. 31, 2024
The Author Email: