Optical Technique, Volume. 48, Issue 1, 60(2022)
Far-field Sub-wavelength microscopic imaging properties of microsphere lenses
[1] [1] Rittweger E, Han K Y, Irvine S E, et al. STED microscopy reveals crystal colour centres with nanometric resolution[J]. Nature Photonics,2009,3(3):144-147.
[2] [2] Lemoult F, Fink M, Lerosey G. A polychromatic approach to far-field superlensing at visible wavelengths[J]. Nature communications,2012,3:889.
[3] [3] Zhang X, Liu Z. Superlenses to overcome the diffraction limit[J]. Nature Materials,2008,7(6):435-441.
[4] [4] Deng Y, Yang S, Xia Y, et al. Super-resolution imaging properties of cascaded microsphere lenses[J]. Applied Optics,2018,57(20):5578-5582.
[5] [5] Lecler S, Perrin S, Leong-Hoi A, et al. Photonic jet lens[J]. Scientific Reports,2019,9(1):4725.
[6] [6] Yang L, Yan Y, Qiang W, et al. Sandwich-structure-modulated photoluminescence enhancement of wide bandgap semiconductors capping with dielectric microsphere arrays[J]. Optics Express,2017,25(6):6000-6014.
[7] [7] Lee J Y, Hong B H, Kim W Y, et al. Near-field focusing and magnification through self-assembled nanoscale spherical lenses[J]. Nature,2009,460(7254):498-501.
[9] [9] Cao L, Ye Y H, Yao L, et al. Dependence of focal position on the microscale spherical lens imaging[J]. Optics Communications,2015,353:184-188.
[10] [10] Chen Z, Taflove A, Backman V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique[J]. Optics Express,2004,12(7):1214-1220.
[11] [11] Du B, Ye Y H, Hou J, et al. Sub-wavelength image stitching with removable microsphere-embedded thin film[J]. Applied Physics A,2016,122(1):1-6.
[13] [13] Krivitsky L A, Wang J J, Wang Z, et al. Locomotion of microspheres for super-resolution imaging[J]. Scientific Reports,2013,3:3501
[14] [14] Wang Z, Guo W, Li L, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope[J]. Nature Communications,2011,2:218.
[15] [15] Hao X, Kuang C, Liu X, et al. Microsphere based microscope with optical super-resolution capability[J]. Applied Physics Letters,2011,99(20):203102.
[16] [16] Hao X, Kuang C, Li Y, et al. Hydrophilic microsphere based mesoscopic-lens microscope (MMM)[J]. Optics Communications,2012,285(20):4130-4133.
[17] [17] Darafsheh A, Walsh G F, Dal Negro L, et al. Optical super-resolution by high-index liquid-immersed microspheres[J]. Applied Physics Letters,2012,101(14):141128.
[18] [18] Darafsheh A, Guardiola C, Palovcak A, et al. Optical super-resolution imaging by high-index microspheres embedded in elastomers[J]. Optics Letters,2015,40(1):5-8.
[19] [19] Yang H, Moullan N, Auwerx J, et al. Super‐Resolution biological microscopy using virtual imaging by a microsphere nanoscope[J]. Small,2014,10(9):1712-1718.
[20] [20] Devilez A, Stout B, Bonod N, et al. Spectral analysis of three-dimensional photonic jets[J]. Opt. Express,2008,16(18):14200-14212.
[21] [21] Yang S, Taflove A, Backman V. Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet[J]. Optics Express,2011,19(8):7084-7093.
[22] [22] Minin I V , Liu C Y , Staliunas K , et al. Experimental observation of flat focusing mirror based on photonic jet efect[J]. Scientific Reports,2020,10(1):8459.
[23] [23] Upputuri P K , Krisnan M , Pramanik M . Microsphere enabled subdiffraction-limited optical-resolution photoacoustic microscopy: a simulation study[J]. Journal of Biomedical Optics,2016,22(4):045001.
Get Citation
Copy Citation Text
GUO Minglei, GUAN Banggui, Qin Yanfu. Far-field Sub-wavelength microscopic imaging properties of microsphere lenses[J]. Optical Technique, 2022, 48(1): 60
Category:
Received: Aug. 8, 2021
Accepted: --
Published Online: Mar. 4, 2022
The Author Email: GUO Minglei (Guomlnj@163.com)
CSTR:32186.14.