Journal of Inorganic Materials, Volume. 40, Issue 5, 511(2025)
[1] LIU S Y, ZHANG S, LIU S et al. Phase stability, mechanical properties and melting points of high-entropy quaternary metal carbides from first-principles[J]. Journal of the European Ceramic Society(2021).
[2] CHEN H, WU Z, LIU M et al. Synthesis, microstructure and mechanical properties of high-entropy (VNbTaMoW)C5 ceramics[J]. Journal of the European Ceramic Society(2021).
[3] CHENG Z, LU W, CHEN L et al. Compressive creep properties and mechanisms of (Ti-Zr-Nb-Ta-Mo)C high entropy ceramics at high temperatures[J]. Journal of the European Ceramic Society(2022).
[4] CHEN H, XIANG H, DAI F Z et al. Low thermal conductivity and high porosity ZrC and HfC ceramics prepared by
[5] ZHOU J, ZHANG J, ZHANG F et al. High-entropy carbide: a novel class of multicomponent ceramics[J]. Ceramics International, 22014(2018).
[6] ZHOU Y, ZHAO B, CHEN H et al. Electromagnetic wave absorbing properties of TMCs (TM=Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C[J]. Journal of Materials Science & Technology(2021).
[8] WEI X F, LIU J X, LI F et al. High entropy carbide ceramics from different starting materials[J]. Journal of the European Ceramic Society(2019).
[9] YU D, YIN J, ZHANG B et al. Pressureless sintering and properties of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics: the effect of pyrolytic carbon[J]. Journal of the European Ceramic Society(2021).
[10] ISTOMIN P, ISTOMINA E, NADUTKIN A et al. Preparation of (Ti,Zr,Hf,Nb,Ta)C high-entropy carbide ceramics through carbosilicothermic reduction of oxides[J]. Journal of the European Ceramic Society(2021).
[11] HAI W, WU Z, ZHANG S et al. Microstructure, mechanical and tribological properties of high-entropy (TaTiVW)C4 ceramics[J]. International Journal of Refractory Metals and Hard Materials(2023).
[12] CAI F Y, NI D W, DONG S M. Research progress of high-entropy carbide ultra-high temperature ceramics[J]. Journal of Inorganic Materials(2024).
[13] LI J, FAN H, ZHANG Q et al. Carbon vacancies enhanced oxidation resistance of high-entropy carbides (Ti0.2V0.2Nb0.2Mo0.2W0.2)C
[14] LI J, ZHOU Y, SU Y et al. Synthesis and mechanical and elevated temperature tribological properties of a novel high-entropy (TiVNbMoW)C4.375 with carbon stoichiometry deviation[J]. Journal of Advanced Ceramics(2023).
[15] LEYLAND A, MATTHEWS A. On the significance of the
[16] LUO S C, GUO W M, FANG Z L et al. Effect of carbon content on the microstructure and mechanical properties of high-entropy (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C
[17] CHEN J, ZHU Y, CHAI J et al. Microstructure, mechanical, and thermal properties of (MoTaTiVW)C
[18] MAO H R, DONG E T, JIN S B et al. Ultrafast high-temperature synthesis and densification of high-entropy carbides[J]. Journal of the European Ceramic Society(2022).
[19] ANSTIS G R, CHANTIKUL P, LAWN B R et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements[J]. Journal of the American Ceramic Society(1981).
[20] WANG K, CHEN L, XU C et al. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic[J]. Journal of Materials Science & Technology(2020).
[21] TSAI M H, YEH J W. High-entropy alloys: a critical review[J]. Materials Research Letters(2014).
[22] SARKER P, HARRINGTON T, TOHER C et al. High-entropy high-hardness metal carbides discovered by entropy descriptors[J]. Nature Communications(2018).
[23] LI T X, MIAO J W, GUO E Y et al. Tungsten-containing high-entropy alloys: a focused review of manufacturing routes, phase selection, mechanical properties, and irradiation resistance properties[J]. Tungsten(2021).
[24] LI R, LUO R Y, LIN N et al. A novel strategy for fabricating (Ti,Ta,Nb,Zr,W)(C,N) high-entropy ceramic reinforced with
[25] SONG J, CHEN G, XIANG H et al. Regulating the formation ability and mechanical properties of high-entropy transition metal carbides by carbon stoichiometry[J]. Journal of Materials Science & Technology(2022).
[26] LI L, LAN H, TANG S et al. First-principles study of hydrogen trapping and diffusion mechanisms in vanadium carbide with connecting carbon vacancies[J]. International Journal of Hydrogen Energy(2024).
[27] LI J, ZHANG Q, CHEN S et al. Carbon-deficient high-entropy (Zr0.17Nb0.2Ta0.2Mo0.2W0.2)C0.89: a potential high temperature and vacuum wear-resistant material[J]. Materials & Design(2023).
Get Citation
Copy Citation Text
Ning CUI, Yuxin ZHANG, Lujie WANG, Tongyang LI, Yuan YU, Huaguo TANG, Zhuhui QIAO.
Category:
Received: Nov. 12, 2024
Accepted: --
Published Online: Sep. 2, 2025
The Author Email: Lujie WANG (ljwang@licp.cas.cn), Zhuhui QIAO (zhqiao@licp.cas.cn)