Optics and Precision Engineering, Volume. 29, Issue 9, 2247(2021)
3D object detection based on fusion of point cloud and image by mutual attention
[1] [1] 1赵传,张保明,余东行,等.利用迁移学习的机载激光雷达点云分类[J].光学 精密工程, 2019, 27(7):1601-1612. doi: 10.3788/ope.20192707.1601ZHAOCH, ZHANGB M, YUD X, et al. Air-borne Lidar point cloud classification using transfer learning[J]. Opt. Precision Eng., 2019, 27(7): 1601-1612.(in Chinese). doi: 10.3788/ope.20192707.1601
[2] LI B, OUYANG W, SHENG L et al. GS3D: An efficient 3D object detection framework for autonomous driving[C], 1019-1028(2019).
[3] WANG Y, CHAO W L, GARG D et al. Pseudo-lidar from visual depth estimation: Bridging the gap in 3D object detection for autonomous driving[C], 8437-8445(2019).
[4] CHEN X, MA H, WAN J et al. Multi-view 3D object detection network for autonomous driving[C], 6526-6534(2017).
[5] SIMON M, AMENDE K, KRAUS A et al. Complexer-YOLO: Real-time 3D object detection and tracking on semantic point clouds[C], 1190-1199(2019).
[6] [6] 6王张飞,刘春阳,隋新,等.基于深度投影的三维点云目标分割和碰撞检测[J].光学 精密工程, 2020, 28(7):1600-1608. doi: 10.37188/OPE.20202807.1600WANGZH F, LIUCH Y, SUIX, et al. Three-dimensional point cloud object segmentation and collision detection based on depth projection[J]. Opt. Precision Eng., 2020, 28(7):1600-1608. (in Chinese). doi: 10.37188/OPE.20202807.1600
[7] QI C R, SU H, MO K et al. PointNet: Deep learning on point sets for 3D classification and segmentation[C], 77-85(2017).
[8] QI C R, YI L, SU H et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space[C], 5100-5109(2017).
[9] [9] 9杨军,党吉圣.采用深度级联卷积神经网络的三维点云识别与分割[J].光学 精密工程,2020,28(5):1187-1199.YANGJ, DANGJ SH. Recognition and segmentation of three-dimensional point cloud based on deep cascade convolutional neural network[J]. Opt. Precision Eng., 2020, 28(5): 1187-1199. (in Chinese)
[10] ZHOU Y, TUZEL O. Voxelnet: End-to-end learning for point cloud based 3d object detection[C], 4490-4499(2018).
[11] SHI S, WANG X, LI H. PointRCNN: 3D object proposal generation and detection from point cloud[C], 770-779(2019).
[12] LANG A H, VORA S, CAESAR H et al. Pointpillars: Fast encoders for object detection from point clouds[C], 12689-12697(2019).
[13] XU D, ANGUELOV D, JAIN A. PointFusion: deep sensor fusion for 3D bounding box estimation[C], 244-253(2018).
[14] HE K M, ZHANG X, REN S et al. Deep residual learning for image recognition[C], 770-778(2016).
[15] LI Y, BU R, SUN M et al. PointCNN: Convolution on X-transformed points[C], 820-830(2018).
[16] QI C R, LIU W, WU C et al. Frustum pointnets for 3D object detection from RGB-D data[C], 918-927(2018).
[17] LIANG M, YANG B, WANG S et al. Deep continuous fusion for multi-sensor 3d object detection[C], 663-678(2018).
[18] VORA S, LANG A H, HELOU B et al. Pointpainting: Sequential fusion for 3D object detection[C], 4603-4611(2020).
[19] REN S, HE K, GIRSHICK R et al. Faster r-cnn: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[20] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? the kitti vision benchmark suite[C], 3354-3361(2012).
[21] CHEN J Y, BAI T Y. SAANet: Spatial adaptive alignment network for object detection in automatic driving[J]. Image and Vision Computing, 94, 103873(2020).
[22] KU J, MOZIFIAN M, LEE J et al. Joint 3D proposal generation and object detection from view aggregation[C], 5750-5757(2018).
Get Citation
Copy Citation Text
Jun-ying CHEN, Tong-yao BAI, Liang ZHAO. 3D object detection based on fusion of point cloud and image by mutual attention[J]. Optics and Precision Engineering, 2021, 29(9): 2247
Category: Information Sciences
Received: Mar. 9, 2021
Accepted: --
Published Online: Nov. 22, 2021
The Author Email: Jun-ying CHEN (chenjy@xauat.edu.cn)