Acta Photonica Sinica, Volume. 51, Issue 10, 1012001(2022)
Development and Applications of Laser Induced Fluorescence Photobleaching Anemometer(Invited)
[1] HUH D, MATTHEWS B D, MAMMOTO A et al. Reconstituting organ-level lung functions on a chip[J]. Science, 328, 1662-1668(2010).
[2] HALL C N, REYNELL C, GESSLEIN B et al. Capillary pericytes regulate cerebral blood flow in health and disease[J]. Nature, 508, 55-60(2014).
[3] O'HERRON P, CHHATBAR P Y, LEVY M et al. Neural correlates of single-vessel haemodynamic responses in vivo[J]. Nature, 534, 378-382(2016).
[4] ZHAO W, YU H, WEN Y et al. Real-time red blood cell counting and osmolarity analysis using a photoacoustic-based microfluidic system[J]. Lab on a Chip, 21, 2586-2593(2021).
[5] CASTELLANO B M, THELEN A M, MOLDAVSKI O et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex[J]. Science, 355, 1306-1311(2017).
[6] XU C, LU P, GAMAL EL-DIN T M et al. Computational design of transmembrane pores[J]. Nature, 585, 129-134(2020).
[7] SKOPINTSEV P, EHRENBERG D, WEINERT T et al. Femtosecond-to-millisecond structural changes in a light-driven sodium pump[J]. Nature, 583, 314-318(2020).
[8] CAMPOS C D M, GAMAGE S S T, JACKSON J M et al. Microfluidic-based solid phase extraction of cell free DNA[J]. Lab on a Chip, 18, 3459-3470(2018).
[9] RAHMAN M, STOTT M A, HARRINGTON M et al. On demand delivery and analysis of single molecules on a programmable nanopore-optofluidic device[J]. Nature communications, 10, 1-7(2019).
[10] ZHOU R, WANG C, HUANG Y et al. Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures[J]. Biosensors and Bioelectronics, 188, 113336(2021).
[11] BRUIJNS B, TIGGELAAR R, GARDENIERS H. A microfluidic approach for biosensing DNA within forensics[J]. Applied Sciences, 10, 7067(2020).
[12] ZHANG J, CHEN Z, ZHANG Y et al. Construction of a high fidelity epidermis-on-a-chip for scalable in vitro irritation evaluation[J]. Lab on a Chip, 21, 3804-3818(2021).
[13] BROWN A J, BRUNELLI N A, EUM K et al. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes[J]. Science, 345, 72-75(2014).
[14] AMINIAN M, BERNARDI F, CAMASSA R et al. How boundaries shape chemical delivery in microfluidics[J]. Science, 354, 1252-1256(2016).
[15] SACKMANN E K, FULTON A L, BEEBE D J. The present and future role of microfluidics in biomedical research[J]. Nature, 507, 181-189(2014).
[16] SHIN T H, KIM M, SUNG C O et al. A one-stop microfluidic-based lung cancer organoid culture platform for testing drug sensitivity[J]. Lab on a Chip, 19, 2854-2865(2019).
[17] KOMEN J, WESTERBEEK E Y, KOLKMAN R W et al. Controlled pharmacokinetic anti-cancer drug concentration profiles lead to growth inhibition of colorectal cancer cells in a microfluidic device[J]. Lab on a Chip, 20, 3167-3178(2020).
[18] ZHAI J, LI C, LI H et al. Cancer drug screening with an on-chip multi-drug dispenser in digital microfluidics[J]. Lab on a Chip, 21, 4749-4759(2021).
[19] DEMELLO A J. Control and detection of chemical reactions in microfluidic systems[J]. Nature, 442, 394-402(2006).
[20] KIM H, MIN K I, INOUE K et al. Submillisecond organic synthesis: outpacing Fries rearrangement through microfluidic rapid mixing[J]. Science, 352, 691-694(2016).
[21] BUFFI N, BEGGAH S, TRUFFER F et al. An automated microreactor for semi-continuous biosensor measurements[J]. Lab on a Chip, 16, 1383-1392(2016).
[22] LIU Y, JIANG X. Why microfluidics?Merits and trends in chemical synthesis[J]. Lab on a Chip, 17, 3960-3978(2017).
[23] BASU S, MIGLANI A. Combustion and heat transfer characteristics of nanofluid fuel droplets: a short review[J]. International Journal of Heat and Mass Transfer, 96, 482-503(2016).
[24] MUKHERJEE S, MISHRA P C, PARASHAR S K S et al. Role of temperature on thermal conductivity of nanofluids: a brief literature review[J]. Heat and Mass Transfer, 52, 2575-2585(2016).
[25] SINGH A P, KISHORE V R, YOON Y et al. Effect of wall thermal boundary conditions on flame dynamics of CH4-air and H2-air mixtures in straight microtubes[J]. Combustion Science and Technology, 189, 150-168(2017).
[26] LI Zhanhua, ZHENG Xu. The problems and progress in the experimental study of micro/nano-scale flow[J]. Journal of Experiments in Fluid Mechanics, 28, 1-11(2014).
[27] GAD-EL-HAK M. The fluid mechanics of microdevices—the freeman scholar lecture[J]. Journal of Fluids Engineering, 121, 5-33(1999).
[29] ADRIAN R J. Twenty years of particle image velocimetry[J]. Experiments in Fluids, 39, 159-169(2005).
[30] WESTERWEEL J, GEELHOED P F, LINDKEN R. Single-pixel resolution ensemble correlation for micro-PIV applications[J]. Experiments in Fluids, 37, 375-384(2004).
[31] CAI Shengze, XU Chao, GAO Qi et al. Particle image velocimetry based on a deep neural network[J]. Acta Aerodynamica Sinica, 37, 455-461(2019).
[32] GAO Zeyu, LI Xinyang, YE Hongwei. Aberration correction for flow velocity measurements using deep convolutional neural networks[J]. Infrared and Laser Engineering, 49, 9-18(2020).
[33] OLSEN M G, ADRIAN R J. Brownian motion and correlation in particle image velocimetry[J]. Optics & Laser Technology, 32, 621-627(2000).
[34] SHEN Feng, LIU Zhaomiao. Review on the micro-particle image velocimetry technique and applications[J]. Journal of Mechanical Engineering, 48, 155-168(2012).
[35] WESTERWEEL J, ELSINGA G E, ADRIAN R J. Particle image velocimetry for complex and turbulent flows[J]. Annual Review of Fluid Mechanics, 45, 409-436(2013).
[36] ADRIAN R J. Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow: speckle velocimetry vs particle image velocimetry[J]. Applied Optics, 23, 1690-1691(1984).
[37] SANTIAGO J G, WERELEY S T, MEINHART C D et al. A particle image velocimetry system for microfluidics[J]. Experiments in Fluids, 25, 316-319(1998).
[38] WERELEY S T, MEINHART C D. Recent advances in micro-particle image velocimetry[J]. Annual Review of Fluid Mechanics, 42, 557-576(2010).
[39] WILLIAMS S J, PARK C, WERELEY S T. Advances and applications on microfluidic velocimetry techniques[J]. Microfluidics and Nanofluidics, 8, 709-726(2010).
[40] ADRIAN R J. Particle-imaging techniques for experimental fluid mechanics[J]. Annual Review of Fluid Mechanics, 23, 261-304(1991).
[41] MIENER U, HELMERS T, LINDKEN R et al. PIV measurement of the 3D velocity distribution of Taylor droplets moving in a square horizontal channel[J]. Experiments in Fluids, 61, 125(2020).
[42] OISHI M, KINOSHITA H, FUJII T et al. Phase-locked confocal micro-PIV measurement for 3D flow structure of transient droplet formation mechanism in T-shaped microjunction[J]. Measurement Science and Technology, 29, 115204(2018).
[43] ROSSI M, SEGURA R, CIERPKA C et al. On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-PIV[J]. Experiments in Fluids, 52, 1063-1075(2012).
[44] KINOSHITA H, KANEDA S, FUJII T et al. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV[J]. Lab on a Chip, 7, 338-346(2007).
[45] KLEIN S A, POSNER J D. Improvement in two-frame correlations by confocal microscopy for temporally resolved micro particle imaging velocimetry[J]. Measurement Science and Technology, 21, 105409(2010).
[46] JAMES J, BROWN C M. Any way you slice it-acomparison of confocal microscopy techniques[J]. Journal of Biomolecular Techniques, 26, 54-65(2015).
[48] WESTERWEEL J. Efficient detection of spurious vectors in particle image velocimetry data[J]. Experiments in Fluids, 16, 236-247(1994).
[49] SUN Dexin, SUN Zhihao, SONG Zhiwei et al. Experimental study on the flow characteristics of electrohydrodynamic plumes of dielectric liquid[J]. Scientia Sinica Technologica, 50, 983-996(2020).
[50] ZHAO W, YANG F, KHAN J et al. Measurement of velocity fluctuations in microfluidics with simultaneously ultrahigh spatial and temporal resolution[J]. Experiments in Fluids, 57, 11(2015).
[51] ROBBEN F, CHENG R K, POPOVICH M M et al. Associating particle tracking with laser fringe anemometry[J]. Journal of Physics E: Scientific Instruments, 13, 315(1980).
[52] CORNIC P, LECLAIRE B, CHAMPAGNAT F et al. Double-frame tomographic PTV at high seeding densities[J]. Experiments in Fluids, 61, 23(2020).
[53] GALLO D, GÜLAN U, DI STEFANO A et al. Analysis of thoracic aorta hemodynamics using 3D particle tracking velocimetry and computational fluid dynamics[J]. Journal of Biomechanics, 47, 3149-3155(2014).
[54] ERGIN G, BO B W, GADE-NIELSEN N F. A review of planar PIV systems and image processing tools for Lab-On-Chip microfluidics[J]. Sensors, 18, 3090(2018).
[55] WU Y, WU X, YAO L et al. Simultaneous measurement of 3D velocity and 2D rotation of irregular particle with digital holographic particle tracking velocimetry[J]. Powder Technology, 284, 371-378(2015).
[56] FULLMER W D, HIGHAM J E, LAMARCHE C Q et al. Comparison of velocimetry methods for horizontal air jets in a semicircular fluidized bed of Geldart Group D particles[J]. Powder Technology, 359, 323-330(2020).
[57] PEREIRA F, STÜER H, GRAFF E C et al. Two-frame 3D particle tracking[J]. Measurement Science and Technology, 17, 1680(2006).
[58] GOLLIN D, BREVIS W, BOWMAN E T et al. Performance of PIV and PTV for granular flow measurements[J]. Granular Matter, 19, 1-16(2017).
[59] KHLER C J, SCHARNOWSKI S, CIERPKA C. On the uncertainty of digital PIV and PTV near walls[J]. Experiments in Fluids, 52, 1641-1656(2012).
[60] SCHANZ D, GESEMANN S, SCHRDER A. Shake-the-box: Lagrangian particle tracking at high particle image densities[J]. Experiments in Fluids, 57, 70(2016).
[61] PEARCE M, SPARROW Z, MABOTE T R et al. StoBEST: an efficient methodology for increased spatial resolution in two-component molecular tagging velocimetry[J]. Measurement Science and Technology, 32, 035302(2021).
[62] WATER W, DAM N. How to find patterns written in turbulent air[J]. Experiments in Fluids, 54, 1574(2013).
[63] BORDOLOI A D, MARTINEZ A A, PRESTRIDGE K. Relaxation drag history of shock accelerated microparticles[J]. Journal of Fluid Mechanics, 823, 10.1017(2017).
[64] CHARONKO J J, FRATANTONIO D, MAYER J M et al. Windowed Fourier transform and cross-correlation algorithms for molecular tagging velocimetry[J]. Measurement Science and Technology, 31, 074007(2020).
[65] LI F, ZHANG H, BAI B. A review of molecular tagging measurement technique[J]. Measurement, 171, 108790(2020).
[66] MILES R B, CONNORS J J, MARKOVITZ E C et al. Instantaneous profiles and turbulence statistics of supersonic free shear layers by Raman excitation plus laser-induced electronic fluorescence (Relief) velocity tagging of oxygen[J]. Experiments in Fluids, 8, 17-24(1989).
[67] LEMPERT W R, RONNEY P, MAGEE K et al. Flow tagging velocimetry in incompressible flow using photo-activated nonintrusive tracking of molecular motion (PHANTOMM)[J]. Experiments in Fluids, 18, 249-257(1995).
[68] HANDA T, MII K, SAKURAI T et al. Study on supersonic rectangular microjets using molecular tagging velocimetry[J]. Experiments in Fluids, 55, 1725(2014).
[69] ELSNAB J R, MAYNES D, KLEWICKI J C et al. Mean flow structure in high aspect ratio microchannel flows[J]. Experimental Thermal and Fluid Science, 34, 1077-1088(2010).
[70] SAMOUDA F, COLIN S, BRANDNER J J et al. Micro molecular tagging velocimetry for analysis of gas flows in mini and micro systems[J]. Microsystem Technologies, 21, 527-537(2015).
[71] MOHAND H H, FREZZOTTI A, BRANDNER J J et al. Molecular tagging velocimetry by direct phosphorescence in gas microflows: correction of Taylor dispersion[J]. Experimental Thermal and Fluid Science, 83, 177-190(2017).
[72] FRATANTONIO D, MARCOS R C, BARROT C et al. Velocity measurements in channel gas flows in the slip regime by means of molecular tagging velocimetry[J]. Micromachines (Basel), 11, 1-32(2020).
[73] SANAVANDI H, BAO S, ZHANG Y et al. A cryogenic-helium pipe flow facility with unique double-line molecular tagging velocimetry capability[J]. Review of Scientific Instruments, 91, 053901(2020).
[74] DOMINIQUE F, MARCOS R C, MOHAND H H et al. Molecular tagging velocimetry for confined rarefied gas flows: Phosphorescence emission measurements at low pressure[J]. Experimental Thermal and Fluid Science, 99, 510-524(2018).
[75] HUANG D, SWANSON E A, LIN C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).
[76] TAN Zehao, FENG Yunpeng, WANG Zhong. Advances in measurement of optical central thickness by low coherence interferometry[J]. Imaging Science and Photochemistry, 34, 5-14(2016).
[77] LI Y, CHEN J, CHEN Z. Advances in Doppler optical coherence tomography and angiography[J]. Translational Biophotonics, 1, e201900005(2019).
[78] LU Dongxiao, FANG Wenhui, LI Yuyao et al. Optical coherence tomography: principles and recent developments[J]. Chinese Optics, 13, 920-935(2020).
[79] DONG B, PAN B. Optical coherence tomography and its applications in experimental mechanics: a review[J]. Chinese Science Bulletin, 65, 2094-2105(2020).
[81] KOPONEN A I, HAAVISTO S. Analysis of industry-related flows by optical coherence tomography—a review[J]. KONA Powder and Particle Journal, 37, 42-63(2020).
[84] HALLAM J M, RIGAS E, CHARRETT T O H et al. 2D spatially-resolved depth-section microfluidic flow velocimetry using dual beam OCT[J]. Micromachines, 11, 351(2020).
[85] RIGAS E, HALLAM J M, CHARRETT T O H et al. Metre-per-second microfluidic flow velocimetry with dual beam optical coherence tomography[J]. Optics Express, 27, 23849-23863(2019).
[86] POELMA C. Measurement in opaque flows: a review of measurement techniques for dispersed multiphase flows[J]. Review and Perspective in Mechanics, 231, 2089-2111(2020).
[87] GLADDEN L F, SEDERMAN A J. Recent advances in flow MRI[J]. Journal of Magnetic Resonance, 229, 2-11(2013).
[88] ELKINS C J, ALLEY M T. Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion[J]. Experiments in Fluids, 43, 823-858(2007).
[89] BRYANT D J, PAYNE J A, FIRMIN D N et al. Measurement of flow with NMR imaging using a gradient pulse and phase difference technique[J]. Journal of Computer Assisted Tomography, 8, 588-593(1984).
[90] SADEGHI M, MIRDRIKVAND M, PESCH G R et al. Full-field analysis of gas flow within open-cell foams: comparison of micro-computed tomography-based CFD simulations with experimental magnetic resonance flow mapping data[J]. Experiments in Fluids, 61, 124(2020).
[91] JOHN K, JAHANGIR S, GAWANDALKAR U et al. Magnetic resonance velocimetry in high-speed turbulent flows: sources of measurement errors and a new approach for higher accuracy[J]. Experiments in Fluids, 61, 1-17(2020).
[92] WANG G R. Laser induced fluorescence photobleaching anemometer for microfluidic devices[J]. Lab on a Chip, 5, 450-456(2005).
[93] KUANG C F, WANG G R. A novel far-field nanoscopicvelocimetry for nanofluidics[J]. Lab on a Chip, 10, 240-245(2010).
[94] KUANG C F, QIAO R, WANG G R. Ultrafast measurement of transient electroosmotic flow in microfluidics[J]. Microfluidics and Nanofluidics, 11, 353-358(2011).
[95] ZHAO W, LIU X, YANG F et al. Study of oscillating electroosmotic flows with high temporal and spatial resolution[J]. Analytical Chemistry, 90, 1652-1659(2018).
[96] ZHAO W, YANG F, KHAN J et al. Corrections on LIFPA velocity measurements in microchannel with moderate velocity fluctuations[J]. Experiments in Fluids, 56, 39(2015).
[97] WANG Y C, ZHAO W, HU Z Y et al. Parametric study of the emission spectra and photobleaching time constants of a fluorescent dye in laser induced fluorescence photobleaching anemometer (LIFPA) applications[J]. Experiments in Fluids, 60, 106(2019).
[98] WANG G R, FIEDLER H E. On high spatial resolution scalar measurement with LIF[J]. Experiments in Fluids, 29, 265-274(2000).
[99] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).
[100] WANG G R, YANG F, ZHAO W. There can be turbulence in microfluidics at low Reynolds number[J]. Lab on a Chip, 14, 1452-1458(2014).
[101] WANG G R, YANG F, ZHAO W. Microelectrokinetic turbulence in microfluidics at low Reynolds number[J]. Physical Review E, 93, 013106(2016).
[102] CHEN Y, MENG S S, WANG K G et al. Numerical simulation of the photobleaching process in laser-induced fluorescence photobleaching anemometer[J]. Micromachines, 12, 1592(2021).
[103] PINTON J F, LABBÉ R. Correction to the Taylor hypothesis in swirling flows[J]. Journal De Physique II, 4, 1461-1468(1994).
[104] KUANG C F, ZHAO W, YANG F et al. Measuring flow velocity distribution in microchannels using molecular tracers[J]. Microfluidics and Nanofluidics, 7, 509-517(2009).
[105] KUANG C F, YANG F, ZHAO W et al. Study of the rise time in electroosmotic flow within a microcapillary[J]. Analytical Chemistry, 81, 6590-6595(2009).
[106] WANG G R, YANG F, ZHAO W et al. On micro-electrokinetic scalar turbulence in microfluidics at a low Reynolds number[J]. Lab on a Chip, 16, 1030-1038(2016).
[107] KOLMOGOROV A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds' numbers[J]. AkademiiaNauk SSSR Doklady, 434, 9-13(1941).
[108] DUTTA P, BESKOK A. Analytical solution of time periodic electroosmotic flows: analogies to Stokes' second problem[J]. Analytical Chemistry, 73, 5097-5102(2001).
[109] HU Z Y, ZHAO T Y, WANG H et al. Asymmetric temporal variation of oscillating AC electroosmosis with a steady pressure-driven flow[J]. Experiments in Fluids, 61, 233(2020).
[110] HUNTER R J[M]. Foundations of colloid science(2001).
[111] KARATAY E, DRUZGALSKI C L, MANI A. Simulation of chaotic electrokinetic transport: Performance of commercial software versus custom-built direct numerical simulation codes[J]. Journal of Colloid and Interface Science, 446, 67-76(2015).
[112] DAVIDSON S M, ANDERSEN M B, MANI A. Chaotic induced-charge electro-osmosis[J]. Physical Review Letters, 112, 128302(2014).
[113] HU Z Y, ZHAO T Y, ZHAO W et al. Transition from periodic to chaotic AC electroosmotic flows near electric double layer[J]. AICHE Journal, 67, e17148(2020).
[114] SURESH V, HOMSY G M. Stability of time-modulated electroosmotic flow[J]. Physics of Fluids, 16, 2349-2356(2004).
Get Citation
Copy Citation Text
Wei ZHAO, Yu CHEN, Zhongyan HU, Chen ZHANG, Guiren WANG, Kaige WANG, Jintao BAI. Development and Applications of Laser Induced Fluorescence Photobleaching Anemometer(Invited)[J]. Acta Photonica Sinica, 2022, 51(10): 1012001
Category: Instrumentation, Measurement and Metrology
Received: Nov. 9, 2021
Accepted: Apr. 15, 2022
Published Online: Nov. 30, 2022
The Author Email: Kaige WANG (wangkg@nwu.edu.cn)