Journal of Optoelectronics · Laser, Volume. 35, Issue 6, 657(2024)
Research progress on biomolecular detection based on tunable metasurfaces
[1] [1] WANG L, KRUK S, TANG H, et al. Grayscale transparent metasurface holograms[J]. Optica, 2016, 3(12): 1504-1505.
[2] [2] ISLAM M T, ULLAH M H, SINGH M J, et al. A new metasurface superstrate structure for antenna performance enhancement[J]. Materials, 2013, 6(8): 3226-3240.
[3] [3] SHALTOUT A, LIU J J, KILDISHEV A, et al. Photonic spin Hall effect in gap-plasmon metasurfaces for on-chip chiroptical spectroscopy[J]. Optica, 2015, 2(10): 860-863.
[4] [4] YANG H H, CAO X Y, YANG F, et al. A programmable metasurface with dynamic polarization, scattering and focusing control[J]. Scientific Reports, 2016, 6: 35692.
[5] [5] GUO Y H, PU M B, ZHAO Z Y, et al. Merging geometric phase and plasmon on retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022-2029.
[6] [6] FARMAHINI-FARAHANI M, CHENG J R, MOSALLAEI H. Metasurfaces nanoantennas for light processing[J]. Journal of the Optical Society of America B-Optical Physics, 2013, 30(9): 2365-2370.
[7] [7] DENG Z L, LI G X. Metasurface optical holography[J]. Materials Today Physics, 2017, 3: 16-32.
[8] [8] SU D, WANG X W, SHANG G Y, et al. Amplitude-phase modulation metasurface hologram with inverse angular spectrum diffraction theory[J]. Journal of Physics D: Applied Physics, 2022, 55(23): 235102.
[9] [9] NIAZ M W, YIN Y Z, ZHENG S F. Design of a metasurface with independent amplitude and phase control[C]//International Symposium on Antennas and Propagation (ISAP), October 27-30, 2019, Xi'an, China. New York: IEEE, 2019: 1-3.
[11] [11] PITILAKIS A, SECKEL M, TASOLAMPROU A C, et al. Multi functional metasurface architecture for amplitude, polarization and wave-front control[J]. Physical Review Applied, 2022, 17(6): 064060.
[12] [12] XIONG Q, YAN L, GUO Y, et al. Dual-wavelength metasurface with independent phase and amplitude control based on Pancharatnam-Berry phase manipulation[C]//Asia Communications and Photonics Conference (ACP), November 2-5, 2019, Chengdu, China. New York: IEEE, 2019: M4A.318.
[13] [13] MUEHLENBERND H, GEORGI P, PHOLCHAI N, et al. Amplitude- and phase-controlled surface plasmon polariton excitation with metasurfaces[J]. ACS Photonics, 2015, 3(1): 124-129.
[14] [14] ZHUKESHOV A M, AMRENOVA A U, GABDULLINA A T, et al. Calculation and analysis of electrophysical processes in a high-power plasma accelerator with an intrinsic magnetic field[J]. Technical Physics, 2019, 64(3): 342-347.
[15] [15] TOKITANI M, MASUZAKI S, YOSHIDA N, et al. Microstructural characterization of mixed-material deposition layer on the LHD divertor tiles by using nano-geological diagnosis[J]. Journal of Nuclear Materials, 2013, 438: S818-S821.
[16] [16] HOLLOWAY C L, KABOS P, MOHAMED M A, et al. Realisation of a controllable metafilm/metasurface composed of resonant magnetodielectric particles: measurements and theory[J]. IET Microwaves Antennas & Propagation, 2009, 4(8): 1111-1122.
[17] [17] HAN B X, LI X J, SUI C S, et al. Analog of electromagnetically induced transparency in an E-shaped all-dielectric metasurface based on toroidal dipolar response[J]. Optical Materials Express, 2018, 8(8): 2197-2207.
[18] [18] HOWES A, WANG W Y, KRAVCHENKO I, et al. Dynamic transmission control based on all-dielectric Huygens metasurfaces[J]. Optica, 2018, 5(7): 787-792.
[19] [19] XIA S, IGNATYEYA D O, LIU Q, et al. Enhancement of the faraday effect and magneto-optical figure of merit in all-dielectric metasurfaces[J]. ACS Photonics, 2022, 9(4): 1240-1247.
[20] [20] NYE N S, SWISHER A, BUNGAY C, et al. Design of broadband anti-reflective metasurfaces based on an effective medium approach[C]//Advanced Optics for Defense Applications: UV through LWIR II. International Society for Optics and Photonics, May 11, 2017, Anaheim, US. Bellingham: SPIE, 2017, 10181: 112-118.
[21] [21] LIU L, CHEN C, JIANG Y, et al. Active modulation of absorption in terahertz hybrid metal-vanadium dioxide metasurface[J]. Journal of Alloys and Compounds, 2022, 906: 163913.
[22] [22] SOLANKI U, MANDAL P. All-metal plasmonic metasurface at NIR wavelengths for optical absorption manipulation and refractive index sensing[J]. Optik, 2022, 260: 169107.
[23] [23] LI H, WEI G, ZHOU H, et al. Polarization-independent near-infrared superabsorption in transition metal dichalcogenide Huygens metasurfaces by degenerate critical coupling[J]. Physical Review B, 2022, 105(16): 165305.
[24] [24] NOVOSELOV K S, FALKO V I, COLOMBO L, et al. A roadmap forgraphene[J]. Nature, 2012, 490: 192-200.
[25] [25] QING Y M, MA H F, REN Y Z, et al. Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial[J]. Optics Express, 2019, 27(4): 5253-5263.
[26] [26] GUO T, CHRISTOS A. Broadband polarizers based on graphene metasurfaces[J]. Optics Letters, 2016, 41(23): 5592-5595.
[27] [27] ABDOLLAHRAMEZANI S, HEMMATYAR O, TAGHINEJAD M, et al. Dynamic hybrid metasurfaces[J]. Nano Letters, 2021, 21(3): 1238-1245.
[28] [28] ZHU Q H, DONG J F, WANG J J, et al. Linear optical switch metasurface composed of cross-shaped nano-block and Ge2Sb2Te5 film[J]. Optics Communications, 2021, 498: 127222.
[29] [29] LUO J, SHI X, LUO X, et al. Broadband switchable terahertz half-/quarter-wave plate based on metal-VO2 metamaterials[J]. Optics Express, 2020, 28(21): 30861-30870.
[30] [30] GUAN S, CHENG J, CHEN T, et al. Bi-functional polarization conversion in hybrid graphene-dielectric metasurfaces[J]. Optics Letters, 2019, 44(23): 5683-5686.
[31] [31] CONG L QPITCHAPPA P, WU Y, et al. Active multifunctional microelectromechanical system metadevices: applications in polarization control, wavefront deflection, and holograms[J]. Advanced Optical Materials, 2017, 5(2): 1600716.
[32] [32] SHANG X J, HE H R, YANG H, et al. Frequency dependent multi-functional polarization convertor based on metasurface[J]. Optics Communications, 2019, 449: 8-12.
[33] [33] ZHANG Z T, WANG J F, ZHU R F, et al. Multifunctional full-space metasurface controlled by frequency, polarization and incidence angle[J]. Optics Express, 2021, 29(5): 7544-7557.
[34] [34] CHANG P H, LIN C, HELMY A S. Efficient integrated graphene photonics in the visible and near-IR[J]. Laser & Photonics Reviews, 2017, 11(5): 1700003.
[35] [35] VELLUCCI S, SIBI D, MONTI A, et al. Frequency reconfigurable wire antennas through conformal metasurfaces[C]//2021 Fifteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), September 20-24, 2021, NYC, NY, USA. New York: IEEE, 2021: 445-447.
[36] [36] LI X K, TANG S, DING F, et al. Switchable multifunctional terahertz metasurfaces employing vanadium dioxide[J]. Scientific Reports, 2019, 9(1): 5454.
[37] [37] LI P, LIU J, HUANG P, et al. Tunable fiber-tip lens based on thermo-optic effect of amorphous silicon[J]. Chinese Optics Letters, 2020, 18(3): 030602.
[38] [38] ZHOU R Y, WANG C, HUANG Y X, et al. Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures[J]. Biosensors and Bioelectronics, 2021, 188: 113336.
[39] [39] ZHANG Z, ZHANG M, YAN X, et al. The antibody-free recognition of cancer cells using plasmonic biosensor platforms with the anisotropic resonant metasurfaces[J]. ACS Applied Materials & Interfaces, 2020, 12(10): 11388-11396.
[40] [40] KOSCIOLEK D J, SONAR A, LEPAK L A, et al. Handheld highly selective plasmonic chem/biosensor using engineered binding proteins for extreme conformational changes[C]//Conference on Plasmonics: Design, Materials, Fabrication, Characterzation, and Applications XV, August 25, 2017, San Diego, CA, US. Bellingham: SPIE, 2017, 10346: 110-119.
[41] [41] YANG T Z. Applications of non-periodic metasurface for magnetic resonance imaging[D]. Sheffield: University of Sheffield, 2020: 816919.
[42] [42] YANG T Z, FORD K L, RAO M, et al. A metasurface for multi-nuclear magnetic resonance imaging applications at 1.5T[C]//2019 13th European Conference on Antennas and Propagation (EuCAP), March 31-April 5, 2019, Krakow, Poland. New York: IEEE, 2019: 1-5.
[43] [43] SLOBOZHANYUK A P, PODDUBNY A N, RAAIJMAKERS A J E, et al. Enhancement of magnetic resonance imaging with metasurfaces[J]. Advanced Materials, 2016, 28(9): 1832-1838.
[44] [44] SHEN Z, ZHU K, O'CARROLL D M. Aperiodic porous metasurface-mediated organic semiconductor fluorescence[J]. ACS Photonics, 2018, 5(4): 1215-1227.
[45] [45] KHORASANINEJAD M, CHEN W T, ZHU A Y, et al. Multispectral chiral imaging with a metalens[J]. Nano Letters, 2016, 16(7): 4595-4600.
[46] [46] LEE G Y, SUNG J, LEE B. Metasurface optics for imaging applications[J]. MRS Bulletin, 2020, 45(3): 202-209.
[47] [47] PAHLEVANINEZHAD H, KHORASANINEJAD M, HUANG Y W, et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo[J]. Nature Photonics, 2018, 12(9): 540-547.
[48] [48] ALICI K B. Hybridization of fano and vibrational resonances in surface-enhanced infrared absorption spectroscopy of streptavidin monolayers on metamaterial substrates[J]. IEEE Transactions on Nanotechnology, 2014, 13(2): 216-221.
[49] [49] PATEL S K, SURVE J, PARMAR J, et al. Graphene-based metasurface refractive index biosensor for hemoglobin detection: machine learning assisted optimization[J]. IEEE Transactions on NanoBioscience, 2022, 22(2): 430-437.
[50] [50] AHMED R, OZEN M O, KARAASLAN M G, et al. Tunable Fano-resonant metasurfaces on a disposable plastic-template for multimodal and multiplex biosensing[J]. Advanced Materials, 2020, 32(19): e1907160.
[51] [51] KABASHIN A V, EVANS P, PASTKOVSKY S, et al. Plasmonic nanorod metamaterials for biosensing[J]. Nature Materials, 2009, 8(11): 867-871.
[52] [52] IWANAGA M. All-dielectric metasurface fluorescence biosensors for high-sensitivity antibody/antigen detection[J]. ACS Nano, 2020, 14(12): 17458-17467.
[53] [53] XU X, YING Y B, LI Y B. Gold nanorods based LSPR biosensor for label-free detection of alpha-fetoprotein[J]. Procedia Engineering, 2011, 25: 67-70.
[54] [54] HU J, SAFIR F, ABENDROTH J M, et al. Rapid genetic screening with high quality factor metasurfaces[EB/OL].(2021-10-15)[2023-10-18]. https://arxiv.org/abs/2110.07862v2.
[55] [55] GU H Y, SHI C, WU X J, et al. Molecular methylation detection based on te rahertz metamaterial technology[J]. Analyst, 2020, 145(20): 6705-6712.
[56] [56] AOUANI H, RAHMANI M, SIPOVA H, et al. Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies[J]. The Journal of Physical Chemistry C, 2013, 117(36): 18620-18626.
[57] [57] XU W D, XIE L J, ZHU J F, et al.[Terahertz biosensing with a graphene-metamaterial heterostructure platform[J]. Carbon, 2019, 141: 247-252.
[58] [58] ETEZADI D, WARNER J B, LASHUEL H A, et al. Real-time in situ secondary structure analysis of protein monolayer with midinfrared plasmonic nanoantennas[J]. ACS Sensors, 2018, 3(6): 1109-1117.
[59] [59] ZHANG M, CHENG Q, WU Y, et al. Design of broadband and monolayer terahertz metasurface absorber with genetic algorithm optimization[C]//10th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Micro-and Nano-Optics, Catenary Optics, and Subwavelength Electromagnetics, December 13, 2021, Chengdu, China. Bellingham: SPIE, 2021, 12072: 115-123.
[60] [60] WU Q, SCARBONOUGH C P, WERNER D H, et al. Design synthesis of metasurfaces for broadband hybrid-mode horn antennas with enhanced radiation pattern and polarization characteristics[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(8): 3594-3604.
[61] [61] LONG Z, LIANG Y, FENG L, et al. Low-cost and high sensitivity glucose sandwich detection using a plasmonic nanodisk metasurface[J]. Nanoscale, 2020, 12(19): 10809-10815.
[62] [62] AL-NAIB I. Terahertz asymmetric S-shaped complementary metasurface biosensor for glucose concentration[J]. Biosensors, 2022, 12(8): 609.
[63] [63] ZHANG X J, WANG Y, CUI Z, et al. All-silicon periodic and non-periodic THz metasurface for sensing applications[J]. Optical Materials, 2022, 126: 112206.
[64] [64] BHATI R, JEWARIYA M, MALIK A K. Spoof surface plasmon-based terahertz metasensor for glucose and ethanol[J]. Applied Physics A, 2022, 128(9): 840.
[65] [65] GUSEV S I, SOBOLEVA V Y, KUBLANOVA I L, et al. Glucose level sensor based on metasurface in THz frequency range[J]. AIP Conference Proceedings, 2019, 2098(1): 020008.
[66] [66] LI F, SHEN J, GUAN C, et al. Exploring near-field sensing efficiency of complementary plasmonic metasurfaces for immunodetection of tumor markers[J]. Biosensors and Bioelectronics, 2022, 203: 114038.
[67] [67] PERTSCH T, KIVSHAR Y. Nonlinear optics with resonant metasurfaces[J]. MRS Bulletin, 2020, 45(3): 210-220.
[68] [68] WANG Y F, ALI M A, CHOW E K C, et al. An optofluidic metasurface for lateral flow-through detection of breast cancer biomarker[J]. Biosensors and Bioelectronics, 2018, 107: 224-229.
[69] [69] GENG Z, ZHANG X, FAN Z, et al. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage[J]. Scientific Reports, 2017, 7(1): 16378.
[70] [70] VRBA D, VRBA J, RODRIGUES D B, et al. Numerical investigation of novel microwave applicators based on zero-order mode resonance for hyperthermia treatment of cancer[J]. Journal of the Franklin Institute, 2017, 354(18): 8734-8746.
[71] [71] HUANG S H, LI J, FAN Z, et al. Monitoring the effects of chemical stimuli on live cells with metasurface-enhanced infrared reflection spectroscopy[J]. Lab on a Chip, 2021, 21(20): 3991-4004.
[72] [72] WESEMANN L, RICKETT J, DAVIS T J, et al. Real-time phase imaging with an asymmetric transfer function metasurface[J]. ACS Photonics, 2022, 9(5): 1803-1807.
[73] [73] PARK S J, HONG J T, Choi S J, et al. Detection of microorganisms using terahertz metamaterials[J]. Scientific Reports, 2014, 4: 4988.
[74] [74] RODRIGO D, TITTL A, AIT-BOUZIAD N, et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces[J]. Nature Communications, 2018, 9(1): 2160.
[75] [75] GALLOT G, JAMISON S P, MCGOWAN R W, et al. Terahertz waveguides[J]. Journal of the Optical Society of America B, 2000, 17(5): 851-863.
[76] [76] ZHANG M, CHENG Q, WANG B, et al. Highly sensitive terahertz sensors based on polarization independent and multiple resonance[J]. Optics Communications, 2022, 507: 127519.
[77] [77] KAUR H, SINGH H S. Design of a compact polarization-insensitive multi-band metamaterial absorber for terahertz applications[J]. Optik, 2022, 250: 168339.
[78] [78] BODROV S, MURZANEV A, KORYTIN A, et al. Terahertz-field-induced optical luminescence from graphene for imaging and near-field visualization of a terahertz field[J]. Optics Letters, 2021, 46(23): 5946-5949.
[79] [79] WU S T, ZHOU J, QIAN J J, et al. THz biosensor based on metasurface integrated with spintronic emitter[C]//2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), August 29-September 3, Chengdu, China. New York: IEEE, 2021: 1-2.
[80] [80] PARMAR J, PATEL S K. Encrypted and tunable graphene-based metasurface refractive index sensor[J]. Microwave and Optical Technology Letters, 2022, 64(1): 77-82.
[81] [81] AHMADIVAND A, GERISLIOGLU B, AHUJA R, et al. Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings[J]. Materials Today, 2020, 32: 108-130.
[82] [82] SHAN L X, SHEN S L, HUANG J L, et al. Cells density-sensitive terahertz biosensor based on ITO metasurface array[C]//46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), August 29-September 3, 2021, Chengdu, China. New York: IEEE, 2021: 1-2.
[83] [83] PATEL S K, PARMAR J, KOSTA Y P, et al. Design of graphene metasurface based sensitive infrared biosensor[J]. Sensors and Actuators A: Physical, 2020, 301: 111767.
[84] [84] ZHAO H, TAN Y, ZHANG L, et al. Ultrafast hydrogen bond dynamics of liquid water revealed by terahertz-induced transient birefringence[J]. Light: Science & Applications, 2020, 9: 136.
[85] [85] CHEN W F, LIU H J, JIA Y T, et al. Ultra-wideband low-scattering metamaterial based on combination of water absorber and polarization rotation metasurface[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32(9): e23260.
[86] [86] ZHANG M, CHENG Q, ZHANG X, et al. Polarization-insensitive Fano resonance for highly-sensitive terahertz sensors[C]//Plasmonics VI, October 9, 2021, Nantong, Jiangsu, China. Bellingham: SPIE, 2021, 11904: 15-21.
[87] [87] BERUETE M, JAUREGUI-LOPEZ I. Terahertz sensing based on metasurfaces[J]. Advanced Optical Materials, 2020, 8(3): 1900721.
[88] [88] FENG F, PORTALUPI S, LAFOSSE X, et al. Coupling colloidal nanocrystals to Optical Tamm plasmons[C]//2015 17th International Conference on Transparent Optical Networks (ICTON), July 5-9, Budapest, Hungary. New York: IEEE, 2015: 1-4.
[90] [90] YE Y Y, XIE M Z, TANG J, et al. Highly sensitive and tunable terahertz biosensor based on optical Tamm states in graphene-based Bragg reflector[J]. Results in Physics, 2019, 15: 102779.
[91] [91] QIAN J, ZHOU J, ZHU Z, et al. Broadband tunable terahertz absorber based on graphene metasurface[C]//2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), August 29-September 3, 2021, Chengdu, China. New York: IEEE, 2020: 1-2.
[92] [92] TAGHVAEE H, PITILAKIS A, TSILIPAKOS O, et al. Multi-wideband terahertz communications via tunable graphene-based metasurfaces in 6G networks[EB/OL].(2022-03-19)[2023-10-18]. https://arxiv.org/abs/2203.10298.
[93] [93] LIU W G, HU B, HUANG Z D, et al. Graphene-enabled electrically controlled terahertz meta-lens[J]. Photonics Research, 2018, 6(7): 703-708.
[94] [94] PLUM E, ZHOU J, DONG J, et al. Metamaterial with negative index due to chirality[J]. Physical Review B, 2009, 79(3): 035407.
[95] [95] FLAPAN E. When topology meets chemistry: a topological look at molecular chirality[M]. Cambridge: Cambridge University Press, 2000.
[97] [97] GUIGARRO A, YUS M. The origin of chirality in the molecules of life: from awareness to the current theories and perspectives of this unsolved problem[M]. London: Royal Society of Chemistry, 2008.
[98] [98] PAN R, LIU Z, ZHU W, et al. Asymmetrical chirality in 3D bended metasurface[J]. Advanced Functional Materials, 2021: 2100689.
[99] [99] OKUMURA S, YOSHINO H, KAWAMURA H. Spin-chirality decoupling and critical properties of a two-dimensional fully frustrated XY model[J]. Physical Review B, 2011, 83(9): 094429.
[100] [100] ASGARI S, GRANPAYEH N, FABRITIUS T. Controllable terahertz cross-shaped three-dimensional graphene intrinsically chiral metastructure and its biosensing application[J]. Optics Communications, 2020, 474: 126080.
[101] [101] EBERT D, KLIMENKO K G, KOLMAKOV P B, et al. Phase transitions in hexagonal, graphene-like lattice sheets and nanotubes under the influence of external conditions[J]. Annals of Physics, 2016, 371: 254-286.
[102] [102] ZHAO Y. Quantum hall transport in graphene and its bilayer[D]. New York: Columbia University. 2012.
[103] [103] YANG K, CHOPRA N, ABBASI Q H, et al. Collagen analysis at terahertz band using double-debye parameter extraction and particle swarm optimisation[J]. IEEE Access, 2017, 5: 27850-27856.
[104] [104] CUI X Y, ZHENG R K, LIU Z W, et al. Magic numbers of nanoholes in graphene: tunable magnetism and semiconductivity[J]. Physical Review B, 2011, 84(12): 125410.
[105] [105] TANG T T, ZHANG Y, PARK C H, et al. A tunable phonon-exciton Fano system in bilayer graphene[J]. Nature Nanotechnology, 2010, 5(1): 32-36.
[106] [106] VARSHNEY G, GIRI P. Bipolar charge trapping for absorption enhancement in a graphene-based ultrathin dual-band terahertz biosensor[J]. Nanoscale Advances, 2021, 3(20): 5813-5822.
[107] [107] LIU P Y, CHIN L K, SER W, et al. Cell refractive index for cell biology and disease diagnosis: past, present and future[J]. Lab on a Chip, 2016, 16(4): 634-644.
[108] [108] NEJAT M, NOZHAT N. Ultrasensitive THz refractive index sensor based on a controllable perfect MTM absorber[J]. IEEE Sensors Journal, 2019, 19(22): 10490-10497.
[109] [109] HORI M, AOKI T, TANIKAWA T, et al. Modeling angular-dependent spectral emissivity of snow and ice in the thermal infrared atmospheric window[J]. Applied Optics, 2013, 52(30): 7243-7255.
[110] [110] BRANDENBURG K, KUSUMOTO S, SEYDEL U. Conformational studies of synthetic lipid a analogues and partial structures by infrared spectroscopy[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1997, 1329(1): 183-201.
[112] [112] DAVIES R, BURSTON A, WARD M. Investigating ULIRGs in the near-infrared: imaging and spectroscopy[C]//Starburst Galaxies: Near and Far. Berlin, Heidelberg: Springer, 2001: 237-242.
[113] [113] RIEFKE B, LICHA K, SEMMLER W, et al. In vivo characterization of cyanine dyes as contrast agents for near-infrared imaging[C]//Optical and Imaging Techniques for Biomonitoring Ⅱ, December 11, 1996, Vienna, Austria. Bellingham: SPIE, 1996, 2927: 199-208.
[114] [114] GURVISH A S, BELEN'KII M S. Influence of stratospheric turbulence on infrared imaging[J]. Journal of the Optical Society of America A, 1995, 12(11): 2517.
[115] [115] TIAN H, ZHANG L N, LI M, et al. Weighted SPXY method for calibration set selection for composition analysis based on near-infrared spectroscopy[J]. Infrared Physics & Technology, 2018, 95: 88-92.
[116] [116] CHENG Q, ALMASRI M. Silicon germanium oxide (SixGe1-xOy) infrared material for uncooled infrared detection[C]//Infrared Technology and Applications, May 6, 2009, Orlando, Florida, United States. Bellingham: SPIE, 2009, 7298: 215-222.
[117] [117] CENTNER V, MASSART D L, DE NOORD O E, et al. Elimination of uninformative variables for multivariate calibration[J]. Analytical Chemistry, 1996, 6821: 3851-3858.
[118] [118] ZHANG T, FENG Q, CUI C, et al. Research on error compensation method for dual-beam measurement of roll angle based on rhombic prism[J]. Chinese Optics Letters, 2014, 12(7): 071201.
[121] [121] FARMANI A, MIR A, BAZGIR M, et al. Highly sensitive nano-scale plasmonic biosensor utilizing Fano resonance metasurface in THz range: numerical study[J]. Physica E: Low-dimensional Systems and Nanostructures, 2018, 104: 233-240.
[122] [122] LI Z Y, ZHU Y B, HAO Y F, et al. Hybrid metasurface-based mid-infrared biosensor for simultaneous quantification and identification of monolayer protein[J]. ACS Photonics, 2019, 6(2): 501-509.
[123] [123] ANDRADE A P A, RIBEIRO A L B, WUENSCHE C A. High order correction terms for the peak-peak correlation function in nearly-Gaussian models[J]. Astronomy & Astrophysics, 2006, 457(2): 385-391.
[124] [124] KO N H. Verification of correction factors for non-Gaussian effect on fatigue damage on the side face of tall buildings[J]. International Journal of Fatigue, 2008, 30(5): 779-792.
[125] [125] CONTRERAS M P, AVULA R Y, SINGH R K. Evaluation of nano zinc (ZnO) for surface enhancement of ATR-FTIR spectra of butter and spread[J]. Food and Bioprocess Technology, 2010, 3(4): 629-635.
[126] [126] ZHANG P X, WANG X, GUO Z G. Fourier transform infrared surface enhanced Raman scattering from pyridine in Ag colloids[J]. Chinese Physics Letters, 1990, 7(10): 465.
[127] [127] MUHAMMAD N, LIU Q, TANG X, et al. Highly flexible and voltage based wavelength tunable biosensor[J]. Physica Status Solidi (A), 2019, 216(6): 1800633.
[128] [128] HUANG Y J, TSAI M C, WANG C H, et al. Characterizations and thermal stability improvement of phase-change memory device containing Ce-doped GeSbTe films[J]. Thin Solid Films, 2012, 520(9): 3692-3696.
[129] [129] KUMAR S, SHARMA V. Improvement in thermal stability and crystallization mechanism of Sm doped Ge2Sb2Te5 thin films for phase change memory applications[J]. Journal of Alloys and Compounds, 2022, 893: 162316.
[130] [130] ADAMS D P, CHILDS K D, RODRIGUEZ M A, et al. Different approaches for enhancing the thermal stability of Ge2Sb2Te5 films[R]. Albuquerque, NM, United States: Sandia National Lab. 2016.
[131] [131] PATEL S K, PARMAR J. Highly sensitive and tunable refractive index biosensor based on phase change material[J]. Physica B: Condensed Matter, 2021, 622: 413357.
[132] [132] GHANAM A, LAHCEN A A, BEDUK T, et al. Laser scribed graphene: A novel platform for highly sensitive detection of electroactive biomolecules[J]. Biosensors and Bioelectronics, 2020, 168: 112509.
[133] [133] MAEHASHI K. Electrical detection of biomolecules using graphene-based devices[J]. ECS Meeting Abstracts, 2016, MA2016-02: 3274.
[134] [134] KUILA T, BOSE S, KHANRA P, et al. Recent advances in graphene-based biosensors[J]. Biosensors and Bioelectronics, 2011, 26(12): 4637-4648.
[135] [135] GUO Q, ZHU H, LIU F, et al. Silicon-on-glass graphene-functionalized leaky cavity mode nanophotonic biosensor[J]. ACS Photonics, 2014, 1(3): 221-227.
[136] [136] CHAU Y F C, SYU J Y, CHAO C T C, et al. Design of crossing metallic metasurface arrays based on high sensitivity of gap enhancement and transmittance shift for plasmonic sensing applications[J]. Journal of Physics D: Applied Physics, 2016, 50(4): 045105.
[137] [137] ROMANO S, ZITO G, TORINO S, et al. Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum[J]. Photonics Research, 2018, 6(7): 726-733.
[138] [138] SINGH R, CAO W, Al-NAIB I, et al. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces[J]. Applied Physics Letters, 2014, 105(17): 171101.
[139] [139] ALICI K B. Hybridization of Fano and vibrational resonances in surface-enhanced infrared absorption spectroscopy of streptavidin monolayers on metamaterial substrates[J]. IEEE Transactions on Nanotechnology, 2014, 13(2): 216-221.
Get Citation
Copy Citation Text
CHAI Fumei, LI Chenxia, HONG Zhi, JING Xufeng. Research progress on biomolecular detection based on tunable metasurfaces[J]. Journal of Optoelectronics · Laser, 2024, 35(6): 657
Category:
Received: Oct. 18, 2022
Accepted: Dec. 13, 2024
Published Online: Dec. 13, 2024
The Author Email: JING Xufeng (jingxufeng@cjlu.edu.cn)