Journal of Inorganic Materials, Volume. 39, Issue 6, 571(2024)

Research Progress on Ultra-high Temperature Ceramic Composites

Xinghong ZHANG, Yiming WANG, Yuan CHENG, Shun DONG, and Ping HU*
Author Affiliations
  • Center for Composite Materials and Structure, School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
  • show less
    References(147)

    [1] STOLLERY J L. Hypersonic viscous interaction on curved surfaces[J]. Journal of Fluid Mechanics, 43, 497(1970).

    [2] OPEKA M M, TALMY I G, ZAYKOSKI J. Oxidation-based materials selection for 2000 ℃+hypersonic aerosurfaces: theoretical considerations and historical experience[J]. Journal of Materials Science.

    [3] SUTTON G P, BIBLARZ O[M]. Inc., 2016: 540.

    [4] SCHMIDT D L. Ablative polymers in aerospace technology[J]. Journal of Macromolecular Science—Chemistry, 3, 327(1969).

    [5] SCITI D, ZOLI L, SILVESTRONI L et al. Design, fabrication and high velocity oxy-fuel torch tests of a Cf-ZrB2-fiber nozzle to evaluate its potential in rocket motors[J]. Materials & Design, 109: 709(2016).

    [6] LIFANOV I, YURISHCHEVA A, ASTAPOV A. High-temperature protective coatings on carbon composites[J]. Russian Engineering Research, 39: 804(2019).

    [7] YOO H I, KIM H S, HONG B G et al. Hafnium carbide protective layer coatings on carbon/carbon composites deposited with a vacuum plasma spray coating method[J]. Journal of the European Ceramic Society, 36, 1581(2016).

    [8] ABDOLLAHI A, EHSANI N, VALEFI Z. High temperature ablation-oxidation performance of SiC nanowhisker toughened- SiC/ZrB2-SiC ultra-high temperature multilayer coatings under supersonic flame[J]. Journal of Alloys and Compounds, 745: 798(2018).

    [9] JIN X, FAN X, LU C et al. Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites[J]. Journal of the European Ceramic Society, 38, 1(2018).

    [10] PAUL A, RUBIO V, BINNER J et al. Evaluation of the high temperature performance of HfB2 UHTC particulate filled Cf/C composites[J]. International Journal of Applied Ceramic Technology, 14, 344(2017).

    [11] FAHRENHOLTZ W G, WUCHINA E J, LEE W E et al. Ultra- high temperature ceramics:materials for extreme environment applications[M]. Inc.(2014).

    [12] FAHRENHOLTZ W, HILMAS G. Oxidation of ultra-high temperature transition metal diboride ceramics[J]. International Materials Reviews, 57, 61(2012).

    [13] EAKINS E, JAYASEELAN D D, LEE W E. Toward oxidation- resistant ZrB2-SiC ultra high temperature ceramics[J]. Metallurgical and Materials Transactions A, 42: 878(2011).

    [14] OPEKA M M, TALMY I G, WUCHINA E J et al. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds[J]. Journal of the European Ceramic Society, 19, 2405(1999).

    [15] FAHRENHOLTZ W G, HILMAS G E, TALMY I G et al. Refractory diborides of zirconium and hafnium[J]. Journal of the American Ceramic Society, 90, 1347(2007).

    [16] LIN J, ZHANG X, HAN W. Comparison of ZrB2-ZrO2f ceramics prepared by hot pressing and pressureless sintering[J]. International Journal of Refractory Metals & Hard Materials, 35: 102(2012).

    [17] LIN J, ZHANG X, WANG Z et al. Microstructure and mechanical properties of hot-pressed ZrB2-SiC-ZrO2f ceramics with different sintering temperatures[J]. Materials & Design, 34: 853(2012).

    [18] HU P, GUI K, HONG W et al. High-performance ZrB2-SiC-Cf composite prepared by low-temperature hot pressing using nanosized ZrB2 powder[J]. Journal of the European Ceramic Society, 37, 2317(2017).

    [19] BELLOSI A, MONTEVERDE F, SCITI D. Fast densification of ultra-high-temperature ceramics by spark plasma sintering[J]. International Journal of Applied Ceramic Technology, 3, 32(2006).

    [20] HU P, CHENG Y, WANG P et al. Rolling compacted fabrication of carbon fiber reinforced ultra-high temperature ceramics with highly oriented architectures and exceptional mechanical feedback[J]. Ceramics International, 44, 14907(2018).

    [21] ZHANG G J, DENG Z Y, KONDO N et al. Reactive hot pressing of ZrB2-SiC composites[J]. Journal of the American Ceramic Society, 83, 2330(2000).

    [22] QU Q, HAN J, HAN W et al. In situ synthesis mechanism and characterization of ZrB2-ZrC-SiC ultra high-temperature ceramics[J]. Materials Chemistry and Physics, 110, 216(2008).

    [23] WU H Y, ZOU J, ERIKSSON M et al. Reactive sintering of 2.5D Cf/ZrC-SiC ceramic matrix composite[J]. Journal of the European Ceramic Society, 41, 6189(2021).

    [24] EINARSRUD M A, HAGEN E, PETTERSEN G et al. Pressureless sintering of titanium diboride with nickel, nickel boride and iron additives[J]. Journal of the American Ceramic Society, 80, 3013(1997).

    [25] RODRíGUEZ-SÁNCHEZ J, SÁNCHEZ-GONZÁLEZ E, GUIBERTEAU F et al. Contact-mechanical properties at intermediate temperatures of ZrB2 ultra-high-temperature ceramics pressureless sintered with Mo, Ta, or Zr disilicides[J]. Journal of the European Ceramic Society, 35, 3179(2015).

    [26] ZHANG S C, HILMAS G, FAHRENHOLTZ W. Pressureless densification of zirconium diboride with boron carbide additions[J]. Journal of the American Ceramic Society, 89, 1544(2006).

    [27] HE R, ZHANG X, HU P et al. Aqueous gelcasting of ZrB2-SiC ultra high temperature ceramics[J]. Ceramics International, 38, 5411(2012).

    [28] CHEN X, CHENG G, ZHANG J et al. Residual stress variation in SiCf/SiC composite during heat treatment and its effects on mechanical behavior[J]. Journal of Advanced Ceramics, 9: 567(2020).

    [29] WANG C, PING W, BAI Q et al. A general method to synthesize and sinter bulk ceramics in seconds[J]. Science, 368: 521(2020).

    [30] WANG R, DONG Q, WANG C et al. High-temperature ultrafast sintering: exploiting a new kinetic region to fabricate porous solid- state electrolyte scaffolds[J]. Advanced Materials, 33: 2008161(2021).

    [32] BAKER B, RUBIO V, RAMANUJAM P et al. Development of a slurry injection technique for continuous fibre ultra-high temperature ceramic matrix composites[J]. Journal of the European Ceramic Society, 39, 3927(2019).

    [33] SERVADEI F, ZOLI L, GALIZIA P et al. Development of UHTCMCs via water based ZrB2 powder slurry infiltration and polymer infiltration and pyrolysis[J]. Journal of the European Ceramic Society, 40, 5076(2020).

    [34] LI L, WANG Y, CHENG L et al. Preparation and properties of 2D C/SiC-ZrB2-TaC composites[J]. Ceramics International, 37, 891(2011).

    [35] UHLMANN F, WILHELMI C, SCHMIDT-WIMMER S et al. Preparation and characterization of ZrB2 and TaC containing Cf/SiC composites via polymer-infiltration-pyrolysis process[J]. Journal of the European Ceramic Society, 37, 1955(2017).

    [36] LESLIE C J, BOAKYE E E, KELLER K A et al. Development of continuous SiC fiber reinforced HfB2-SiC composites for aerospace applications[J]. Processing and Properties of Advanced Ceramics and Composites V: Ceramic Transactions, 240: 1(2013).

    [37] TAMMANA S M, DUAN M, ZOU J et al. Ablation behaviour of Cf-ZrC-SiC with and without rare earth metal oxide dopants[J]. Open Ceramics, 10: 100270(2022).

    [38] ZHOU H, NI D, HE P et al. Ablation behavior of C/C-ZrC and C/SiC-ZrC composites fabricated by a joint process of slurry impregnation and chemical vapor infiltration[J]. Ceramics International, 44, 4777(2018).

    [39] ZHU Y, HUANG Z, DONG S et al. Manufacturing 2D carbon- fiber-reinforced SiC matrix composites by slurry infiltration and PIP process[J]. Ceramics International, 34, 1201(2008).

    [40] ZHANG D, HU P, DONG S et al. Microstructures and mechanical properties of Cf/ZrB2-SiC composite fabricated by nano slurry brushing combined with low-temperature hot pressing[J]. Journal of Alloys and Compounds, 789: 755(2019).

    [41] ZHAO X, WANG Y, DUAN L et al. Improved ablation resistance of C/SiC-ZrB2 composites via polymer precursor impregnation and pyrolysis[J]. Ceramics International, 43, 12480(2017).

    [42] YAN C, LIU R, ZHA B et al. Fabrication and properties of 3-dimensional 4-directional Cf/HfC-SiC composites by precursor impregnation and pyrolysis process[J]. Journal of Alloys and Compounds, 739: 955(2018).

    [43] ZHANG J P, FU Q G, WANG L. Preparation, ablation behavior and thermal retardant ability of C/C-HfB2-SiC composites[J]. Materials & Design, 132: 552(2017).

    [44] JIA Y, YAO X, SUN J et al. Effect of ZrC particle size on the ablation resistance of C/C-ZrC-SiC composites[J]. Materials & Design, 129: 15(2017).

    [45] WANG Z, DONG S, ZHANG X et al. Fabrication and properties of Cf/SiC-ZrC composites[J]. Journal of the American Ceramic Society, 91, 3434(2008).

    [46] NASLAIN R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview[J]. Composites Science and Technology, 64, 155(2004).

    [47] ZHAO D, ZHANG C, HU H et al. Preparation and characterization of three-dimensional carbon fiber reinforced zirconium carbide composite by precursor infiltration and pyrolysis process[J]. Ceramics International, 37, 2089(2011).

    [48] YANG Y, JAYARAMAN S, KIM D Y et al. CVD growth kinetics of HfB2 thin films from the single-source precursor Hf(BH4)4[J]. Chemistry of Materials, 18, 5088(2006).

    [49] WANG H, CHEN X, GAO B et al. Synthesis and characterization of a novel precursor-derived ZrC/ZrB2 ultra-high-temperature ceramic composite[J]. Applied Organometallic Chemistry, 27, 79(2013).

    [50] ZHOU H, YANG J, LE G et al. Effect of ZrC amount and distribution on the thermomechanical properties of Cf/SiC-ZrC composites[J]. International Journal of Applied Ceramic Technology, 16, 1321(2019).

    [51] NISAR A, ZHANG C, BOESL B et al. A perspective on challenges and opportunities in developing high entropy-ultra high temperature ceramics[J]. Ceramics International, 46, 25845(2020).

    [52] TONG Y, BAI S, CHEN K. C/C-ZrC composite prepared by chemical vapor infiltration combined with alloyed reactive melt infiltration[J]. Ceramics International, 38, 5723(2012).

    [53] CHEN X, FENG Q, GAO L et al. Interphase degradation of three-dimensional Cf/SiC-ZrC-ZrB2 composites fabricated via reactive melt infiltration[J]. Journal of the American Ceramic Society, 100, 4816(2017).

    [54] KÜTEMEYER M, SCHOMER L, HELMREICH T et al. Fabrication of ultra high temperature ceramic matrix composites using a reactive melt infiltration process[J]. Journal of the European Ceramic Society, 36, 3647(2016).

    [55] VINCI A, ZOLI L, GALIZIA P et al. Reactive melt infiltration of carbon fibre reinforced ZrB2/B composites with Zr2Cu[J]. Composites Part A: Applied Science and Manufacturing, 137: 105973(2020).

    [57] ZOU L, WALI N, YANG J M et al. Microstructural characterization of a Cf/ZrC composite manufactured by reactive melt infiltration[J]. International Journal of Applied Ceramic Technology, 8, 329(2011).

    [59] CHEN B W, NI D W, WANG J X et al. Ablation behavior of Cf/ZrC-SiC-based composites fabricated by an improved reactive melt infiltration[J]. Journal of the European Ceramic Society, 39, 4617(2019).

    [60] BINNER J, PORTER M, BAKER B et al. Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs—a review[J]. International Materials Reviews, 65, 389(2020).

    [61] RUBIO V, RAMANUJAM P, BINNER J. Ultra-high temperature ceramic composite[J]. Advances in Applied Ceramics, 117, s56(2018).

    [62] REN J, FENG E, ZHANG Y et al. Microstructure and anti-ablation performance of HfC-TaC and HfC-ZrC coatings synthesized by CVD on C/C composites[J]. Ceramics International, 46, 10147(2020).

    [63] TONG M, FU Q, ZHOU L et al. Ablation behavior of a novel HfC-SiC gradient coating fabricated by a facile one-step chemical vapor co-deposition[J]. Journal of the European Ceramic Society, 38, 4346(2018).

    [64] HU H, ZHANG Y, HE X et al. Rapid densification of C/SiC composites by joint processes of CLVD and PIP.[J]. Materials Letters, 65, 3137(2011).

    [65] VIGNOLES G L, DUCLOUS R, GAILLARD S. Analytical stability study of the densification front in carbon-or ceramic- matrix composites processing by TG-CVI[J]. Chemical Engineering Science, 62, 6081(2007).

    [66] TANG Z H, QU D N, XIONG J et al. Effects of infiltration conditions on the densification behavior of carbon/carbon composites prepared by a directional-flow thermal gradient CVI process[J]. Carbon, 41, 2703(2003).

    [67] TAGUCHI T, NOZAWA T, IGAWA N et al. Fabrication of advanced SiC fiber/F-CVI SiC matrix composites with SiC/C multi- layer interphase[J]. Journal of Nuclear Materials, 329: 572(2004).

    [68] VENKATACHALAM V, BLEM S, GÜLHAN A et al. Thermal qualification of the UHTCMCs produced using RF-CVI technique with VMK facility at DLR.[J]. Journal of Composites Science, 6, 24(2022).

    [69] NASLAIN R R, PAILLER R, BOURRAT X et al. Synthesis of highly tailored ceramic matrix composites by pressure-pulsed CVI.[J]. Solid State Ionics, 141: 541(2001).

    [70] CHENG Y, HU P, ZHANG W et al. One-step introduction of ZrC-SiC inside carbon fabric to fabricate high homogeneous and damage-tolerant composite inspired by vibration[J]. Journal of the European Ceramic Society, 39, 2251(2019).

    [71] HU P, CHENG Y, ZHANG D et al. From ferroconcrete to Cf/UHTC-SiC: a totally novel densification method and mechanism at 1300 °C without pressure[J]. Composites Part B: Engineering, 174: 107023(2019).

    [72] HU P, ZHANG D, DONG S et al. A novel vibration-assisted slurry impregnation to fabricate Cf/ZrB2-SiC composite with enhanced mechanical properties[J]. Journal of the European Ceramic Society, 39, 798(2019).

    [73] ZHANG D, HU P, DONG S et al. Oxidation behavior and ablation mechanism of Cf/ZrB2-SiC composite fabricated by vibration- assisted slurry impregnation combined with low-temperature hot pressing[J]. Corrosion Science, 161: 108181(2019).

    [74] ZHANG D, FENG J, HU P et al. Enhanced mechanical properties and thermal shock resistance of Cf/ZrB2-SiC composite via an efficient slurry injection combined with vibration-assisted vacuum infiltration[J]. Journal of the European Ceramic Society, 40, 5059(2020).

    [75] SUN J, YU S, WADE-ZHU J et al. 3D printing of layered ceramic/carbon fiber composite with improved toughness[J]. Additive Manufacturing, 50: 102543(2022).

    [76] FU H, ZHU W, XU Z et al. Effect of silicon addition on the microstructure, mechanical and thermal properties of Cf/SiC composite prepared via selective laser sintering[J]. Journal of Alloys and Compounds, 792: 1045(2019).

    [77] LV X, YE F, CHENG L et al. 3D printing “wire-on-sphere” hierarchical SiC nanowires/SiC whiskers foam for efficient high-temperature electromagnetic wave absorption[J]. Journal of Materials Science & Technology, 109: 94(2022).

    [78] ZHAO Z, ZHOU G, YANG Z et al. Direct ink writing of continuous SiO2 fiber reinforced wave-transparent ceramics[J]. Journal of Advanced Ceramics, 9: 403(2020).

    [79] KEMP J W, DIAZ A A, MALEK E C et al. Direct ink writing of ZrB2-SiC chopped fiber ceramic composites[J]. Additive Manufacturing, 44: 102049(2021).

    [81] HAN J, LIU C, BRADFORD-VIALVA R L et al. Additive manufacturing of advanced ceramics using preceramic polymers[J]. Materials, 16, 4636(2023).

    [82] LIU Y, CHENG Y, MA D et al. Continuous carbon fiber reinforced ZrB2-SiC composites fabricated by direct ink writing combined with low-temperature hot-pressing[J]. Journal of the European Ceramic Society, 42, 3699(2022).

    [83] ALFANO D, GARDI R, SCATTEIA L et al. UHTC-based hot structures: characterization, design, and on-ground/in-flight testing[J]. Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications.

    [85] ASL M S, KAKROUDI M G, NOORI S. Hardness and toughness of hot pressed ZrB2-SiC composites consolidated under relatively low pressure[J]. Journal of Alloys and Compounds, 619: 481(2015).

    [86] KIM S, CHAE J M, LEE S M et al. Change in microstructures and physical properties of ZrB2-SiC ceramics hot-pressed with a variety of SiC sources[J]. Ceramics International, 40, 3477(2014).

    [87] SILVESTRONI L, SCITI D, MELANDRI C et al. Toughened ZrB2- based ceramics through SiC whisker or SiC chopped fiber additions[J]. Journal of the European Ceramic Society, 30, 2155(2010).

    [88] SCITI D, PIENTI L, DALLE FABBRICHE D et al. Combined effect of SiC chopped fibers and SiC whiskers on the toughening of ZrB2[J]. Ceramics International, 40, 4819(2014).

    [89] GOLLA B R, MUKHOPADHYAY A, BASU B et al. Review on ultra-high temperature boride ceramics[J]. Progress in Materials Science, 111: 100651(2020).

    [90] VAFA N P, KAKROUDI M G, ASL M S. Advantages and disadvantages of graphite addition on the characteristics of hot-pressed ZrB2-SiC composites[J]. Ceramics International, 46, 8561(2020).

    [91] CHENG Y, LYU Y, ZHOU S et al. Non-axially aligned ZrB2-SiC/ZrB2-SiC-graphene short fibrous monolithic ceramics with isotropic in-plane properties[J]. Ceramics International, 45, 4113(2019).

    [92] FARAHBAKHSH I, AHMADI Z, ASL M S. Densification, microstructure and mechanical properties of hot pressed ZrB2-SiC ceramic doped with nano-sized carbon black[J]. Ceramics International, 43, 8411(2017).

    [93] CHENG Y, HU P, ZHOU S et al. Using macroporous graphene networks to toughen ZrC-SiC ceramic[J]. Journal of the European Ceramic Society, 38, 3752(2018).

    [94] TIAN W B, KAN Y M, ZHANG G J et al. Effect of carbon nanotubes on the properties of ZrB2-SiC ceramics[J]. Materials Science and Engineering: A, 487, 568(2008).

    [95] JIN H, MENG S, XIE W et al. HfB2-CNTs composites with enhanced mechanical properties prepared by spark plasma sintering[J]. Ceramics International, 43, 2170(2017).

    [96] ZHOU P, HU P, ZHANG X et al. R-curve behavior of laminated ZrB2-SiC ceramic with strong interfaces[J]. International Journal of Refractory Metals and Hard Materials, 52: 12(2015).

    [97] GUI K, LIU F, WANG G et al. Microstructural evolution and performance of carbon fiber-toughened ZrB2 ceramics with SiC or ZrSi2 additive[J]. Journal of Advanced Ceramics, 7: 343(2018).

    [99] YANG F, ZHANG X, HAN J et al. Characterization of hot-pressed short carbon fiber reinforced ZrB2-SiC ultra-high temperature ceramic composites[J]. Journal of Alloys and Compounds, 472: 395(2009).

    [100] MOR M, VINCI A, FAILLA S et al. A novel approach for manufacturing of layered, ultra-refractory composites using pliable, short fibre-reinforced ceramic sheets[J]. Journal of Advanced Ceramics, 12, 155(2023).

    [101] CHENG Y, LIU C, HU P et al. Using PyC coated short chopped carbon fiber to tackle the dilemma between toughness and strength of ZrC-SiC[J]. Ceramics International, 45, 503(2019).

    [102] NI D, CHENG Y, ZHANG J et al. Advances in ultra-high temperature ceramics composites and coatings[J]. Journal of Advanced Ceramics, 11: 1(2022).

    [103] LI C, LI G, OUYANG H et al. Microstructure and properties of C/C-ZrC composites prepared by hydrothermal deposition combined with carbothermal reduction[J]. Journal of Alloys and Compounds, 741: 323(2018).

    [104] GALIZIA P, FAILLA S, ZOLI L et al. Tough salami-inspired Cf/ZrB2 UHTCMCs produced by electrophoretic deposition[J]. Journal of the European Ceramic Society, 38, 403(2018).

    [105] MATVEEVA A Y, LOMOV S V, GORBATIKH L. Debonding at the fiber/matrix interface in carbon nanotube reinforced composites: modelling investigation[J]. Computational Materials Science, 159: 412(2019).

    [106] LI J, ZHANG Y, FU Y et al. A simple and efficient route to synthesize hafnium carbide nanowires by catalytic pyrolysis of a polymer precursor[J]. Ceramics International, 44, 13335(2018).

    [107] WANG D, DONG S, ZHOU H et al. Effect of pyrolytic carbon interface on the properties of 3D C/ZrC-SiC composites fabricated by reactive melt infiltration[J]. Ceramics International, 42, 10272(2016).

    [108] BOITIER G, DARZENS S, CHERMANT J L et al. Microstructural investigation of interfaces in CMCs[J]. Composites Part A: Applied Science and Manufacturing, 33, 1467(2002).

    [109] KERANS R J, HAY R S, PARTHASARATHY T A et al. Interface design for oxidation-resistant ceramic composites[J]. Journal of the American Ceramic Society, 85, 2599(2002).

    [110] NI D W, WANG J X, DONG S M et al. Fabrication and properties of Cf/ZrC-SiC-based composites by an improved reactive melt infiltration[J]. Journal of the American Ceramic Society, 101, 3253(2018).

    [111] FANG C, HU P, DONG S et al. An efficient hydrothermal transformation approach for construction of controllable carbon coating on carbon fiber from renewable carbohydrate[J]. Applied Surface Science, 491: 478(2019).

    [112] BOULIGAND Y. Twisted fibrous arrangements in biological materials and cholesteric mesophases[J]. Tissue and Cell, 4, 189(1972).

    [113] AN Y, SONG M, WAN K et al. Anisotropic friction properties of biomimetic Cf/ZrB2-SiC ceramic composites with bouligand structures[J]. Tribology International, 186: 108638(2023).

    [114] AN Y, WAN K, YANG Y et al. Fabrication method and mechanical properties of biomimetic Cf/ZrB2-SiC ceramic composites with bouligand structures[J]. Journal of the European Ceramic Society, 43, 283(2023).

    [115] ZIMMERMANN J W, HILMAS G E, FAHRENHOLTZ W G. Thermal shock resistance and fracture behavior of ZrB2-based fibrous monolith ceramics[J]. Journal of the American Ceramic Society, 92, 161(2009).

    [116] ZHOU P, HU P, ZHANG X et al. Laminated ZrB2-SiC ceramic with improved strength and toughness[J]. Scripta Materialia, 64, 276(2011).

    [117] HAN Y, LIU X, ZHANG Q et al. Ultra-dense dislocations stabilized in high entropy oxide ceramics[J]. Nature Communications, 13: 2871(2022).

    [118] PAUL A, VENUGOPAL S, BINNER J et al. UHTC-carbon fibre composites: preparation, oxyacetylene torch testing and characterisation[J]. Journal of the European Ceramic Society, 33, 423(2013).

    [119] ZHANG J P, QU J L, FU Q G. Ablation behavior of nose-shaped HfB2-SiC modified carbon/carbon composites exposed to oxyacetylene torch[J]. Corrosion Science, 151: 87(2019).

    [120] MONTEVERDE F, SAVINO R, FUMO M D S et al. Plasma wind tunnel testing of ultra-high temperature ZrB-SiC composites under hypersonic re-entry conditions[J]. Journal of the European Ceramic Society, 30, 2313(2010).

    [121] LI Q, DONG S, WANG Z et al. Fabrication and properties of 3D Cf/SiC-ZrC composites using ZrC precursor and polycarbosilane[J]. Journal of the American Ceramic Society, 95, 1216(2012).

    [122] MUNGIGUERRA S, DI MARTINO G, CECERE A et al. Arc-jet wind tunnel characterization of ultra-high-temperature ceramic matrix composites[J]. Corrosion Science, 149: 18(2019).

    [123] SAVINO R, CRISCUOLO L, DI MARTINO G D et al. Aero-thermo-chemical characterization of ultra-high-temperature ceramics for aerospace applications[J]. Journal of the European Ceramic Society, 38, 2937(2018).

    [124] TANG S, DENG J, WANG S et al. Fabrication and characterization of an ultra-high-temperature carbon fiber-reinforced ZrB2-SiC matrix composite[J]. Journal of the American Ceramic Society, 90, 3320(2007).

    [125] TANG S, DENG J, WANG S et al. Ablation behaviors of ultra-high temperature ceramic composites[J]. Materials Science and Engineering: A, 465, 1(2007).

    [126] ZENG Y, WANG D, XIONG X et al. Ultra-high-temperature ablation behavior of SiC-ZrC-TiC modified carbon/carbon composites fabricated via reactive melt infiltration[J]. Journal of the European Ceramic Society, 40, 651(2020).

    [128] CHENG Y, HU P, DONG S et al. Dual bionics of structure and preparation: gradient architectured carbon/ceramic composite as light as water but bearing ultra-high temperature max to 2500 °C[J]. Composites Part B: Engineering, 265: 110963(2023).

    [129] GILD J, ZHANG Y, HARRINGTON T et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Scientific Reports, 6: 37946(2016).

    [130] WANG F, XU L, ZOU J et al. Pressureless densification and properties of high-entropy boride ceramics with B4C additions[J]. Journal of Materials Science & Technology, 190: 1(2024).

    [131] BACKMAN L, GILD J, LUO J et al. Part I: theoretical predictions of preferential oxidation in refractory high entropy materials[J]. Acta Materialia, 197: 20(2020).

    [132] ZENG Y, WANG D, XIONG X et al. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3000 ℃[J]. Nature Communications, 8: 15836(2017).

    [133] CAI F, NI D, CHEN B et al. Fabrication and properties of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2) C-SiC high-entropy ceramic matrix composites via precursor infiltration and pyrolysis[J]. Journal of the European Ceramic Society, 41, 5863(2021).

    [134] ZHANG C, BOESL B, AGARWAL A. Oxidation resistance of tantalum carbide-hafnium carbide solid solutions under the extreme conditions of a plasma jet.[J]. Ceramics International, 43, 14798(2017).

    [135] CHENG Y, LYU Y, XIE Y et al. Starting from essence to reveal the ablation behavior and mechanism of 3D PyC Cf/ZrC-SiC composite[J]. Corrosion Science, 201: 110261(2022).

    [136] BOSE D, OLSON M, LAUB B et al. Initial assessment of Mars Science Laboratory heatshield instrumentation and flight data[conf-proc]. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Texas(2013).

    [137] TRUMBLE K A, COZMUTA I, SEPKA S et al. Postflight aerothermal analysis of the stardust sample return capsule[J]. Journal of Spacecraft and Rockets, 47, 765(2010).

    [138] GUO P, LI J, PANG S et al. Ultralight carbon fiber felt reinforced monolithic carbon aerogel composites with excellent thermal insulation performance[J]. Carbon, 183: 525(2021).

    [139] LEVENTIS N, SADEKAR A, CHANDRASEKARAN N et al. Click synthesis of monolithic silicon carbide aerogels from polyacrylonitrile-coated 3D silica networks[J]. Chemistry of Materials, 22, 2790(2010).

    [140] WANG X, LIU J, HOU F et al. Manufacture of porous SiC/C ceramics with excellent damage tolerance by impregnation of LPCS into carbonized pinewood[J]. Journal of the European Ceramic Society, 35, 1751(2015).

    [141] LI F, LIU J X, HUANG X et al. Carbothermal conversion of self-supporting organic/inorganic interpenetrating networks to porous metal boride monoliths[J]. Journal of the American Ceramic Society, 102, 5746(2019).

    [143] BENAD A, JÜRRIES F, VETTER B et al. Mechanical properties of metal oxide aerogels[J]. Chemistry of Materials, 30, 145(2018).

    [144] ZHANG M, WANG Y, ZHANG Y et al. Conductive and elastic TiO2 nanofibrous aerogels: a new concept toward self-supported electrocatalysts with superior activity and durability[J]. Angewandte Chemie International Edition, 59, 23252(2020).

    [145] KIDCHOB T, MALFATTI L, SERRA F et al. Hafnia sol-gel films synthesized from HfCl4: changes of structure and properties with the firing temperature[J]. Journal of Sol-Gel Science and Technology, 42: 89(2007).

    [146] ZHAO K, YE F, CHENG L et al. Formation of ultra-high temperature ceramic hollow microspheres as promising lightweight thermal insulation materials via a molten salt-assisted template method[J]. ACS Applied Materials & Interfaces, 13, 37388(2021).

    [147] WEI K, CHENG X, MO F et al. Design and analysis of integrated thermal protection system based on lightweight C/SiC pyramidal lattice core sandwich panel[J]. Materials & Design, 111: 435(2016).

    [148] WEI K, HE R, CHENG X et al. A lightweight, high compression strength ultra high temperature ceramic corrugated panel with potential for thermal protection system applications[J]. Materials & Design, 66: 552(2015).

    [149] SHIMODA N. Functionally graded materials[J]. Functionally Graded Materials Forum(1990).

    [150] NAIK A K, NAZEER M, PRASAD D et al. Development of functionally graded ZrB2-B4C composites for lightweight ultrahigh-temperature aerospace applications[J]. Ceramics International, 48, 33332(2022).

    Tools

    Get Citation

    Copy Citation Text

    Xinghong ZHANG, Yiming WANG, Yuan CHENG, Shun DONG, Ping HU. Research Progress on Ultra-high Temperature Ceramic Composites[J]. Journal of Inorganic Materials, 2024, 39(6): 571

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 31, 2023

    Accepted: --

    Published Online: Jul. 31, 2024

    The Author Email: Ping HU (huping@hit.edu.cn)

    DOI:10.15541/jim20230609

    Topics