Journal of Applied Optics, Volume. 45, Issue 6, 1158(2024)
Measurement method of correlated properties of broad spectral sources based on two-photon absorption
[1] SABBAH A J, RIFFE D M. Femtosecond pump-probe reflectivity study of silicon carrier dynamics[J]. Physical Review B, 66, 165217-1-11(2002).
[2] KÖNIG K. Multiphoton microscopy in life sciences[J]. Journal of Microscopy, 200, 83-104(2000).
[3] ZIPFEL W, WILLIAMS R, WEBB W. Nonlinear magic: multiphoton microscopy in the biosciences[J]. Nature Biotechnol, 21, 1369-1377(2003).
[4] LI Z, WU E, PANG C et al. Multi-beam single-photon-counting three-dimensional imaging lidar[J]. Optics Express, 25, 10189-10195(2017).
[5] TACHELLA J, ALTMANN Y, MELLADO N et al. Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers[J]. Nature Communications, 10, 4984-1-6(2019).
[6] LI Z, YE J, HUANG X et al. Single-photon imaging over 200 km[J]. Optica, 8, 344-349(2021).
[7] GAO Wei, MA Shiwei, DUAN Yuanyuan. High precision multi-pulse laser ranging echo detection technology[J]. Journal of Applied Optics, 39, 135-139(2018).
[8] GATTI A, BRAMBILLA E, BACHE M et al. Correlated imaging, quantum and classical[J]. Physical Review A, 70, 013802-1-10(2004).
[9] SHAPIRO J H. Computational ghost imaging[J]. Physical Review A, 78, 061802-1-4(2008).
[10] MOREAU P A, TONINELLI E, GREGORY T et al. Ghost imaging using optical correlations[J]. Laser & Photonics Reviews, 12, 1700143-1-11(2018).
[11] RYCZKOWSKI P, BARBIER M, FRIBERG A T et al. Ghost imaging in the time domain[J]. Nature Photonics, 10, 167-170(2016).
[12] PITTMAN T B, SHIH Y H, STREKALOV D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429-1-3(1995).
[13] DIXON P B, HOWLAND G A, CHAN K W C et al. Quantum ghost imaging through turbulence[J]. Physical Review A, 83, 051803-1-5(2011).
[14] GATTI A, BRAMBILLA E, BACHE M et al. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Physical Review Letters, 93, 093602-1-4(2004).
[15] ZHAO C, GONG W, CHEN M et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 101, 141123-1-3(2012).
[16] LIU X, CHEN X, YAO X et al. Lensless ghost imaging with sunlight[J]. Optics Letters, 39, 2314-2317(2014).
[17] KATZ O, BROMBERG Y, SILBERBERG Y. Compressive ghost imaging[J]. Applied Physics Letters, 95, 131110-1-3(2009).
[18] HUANG Pei, YUAN Hao, XIA Yufeng et al. Research progress of ultra-short laser pulse characterization[J]. Journal of Applied Optics, 44, 1157-1166(2023).
[19] WU Lei, YIN Wanhong, YU Bin et al. Research on femto-second laser pulse width and pulse waveform measurement technology[J]. Journal of Applied Optics, 40, 291-299(2019).
[20] BOITIER F, GODARD A, ROSENCHER E et al. Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors[J]. Nature Physics, 5, 267-270(2009).
[21] BOITIER F, GODARD A, DUBREUIL N et al. Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor[J]. Nature Communications, 2, 425-1-6(2011).
[22] LIU W, ZHOU Z, CHEN L et al. Imaging through dynamical scattering media by two-photon absorption detectors[J]. Optics Express, 29, 29972-29981(2021).
[23] LIU W, SHEN D, ZHAO G et al. Spatial narrowing of two-photon imaging in a silicon CCD camera[J]. IEEE Photonics Technology Letters, 34, 459-462(2022).
[24] FISHMAN D A, CIRLOGANU C M, WEBSTER S et al. Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption[J]. Nature Photonics, 5, 561-565(2011).
[25] PATTANAIK H S, REICHERT M, HAGAN D J et al. Three-dimensional IR imaging with uncooled GaN photodiodes using nondegenerate two-photon absorption[J]. Optics Express, 24, 1196-1205(2016).
[26] KNEZ D, HANNINEN A M, PRINCE R C et al. Infrared chemical imaging through non-degenerate two-photon absorption in silicon-based cameras[J]. Light: Science & Applications, 9, 125-1-10(2020).
[27] POTMA E O, KNEZ D, CHEN Y et al. Rapid chemically selective 3D imaging in the mid-infrared[J]. Optica, 8, 995-1002(2021).
[28] TANG Z, BAI B, ZHOU Y et al. Measuring Hanbury Brown and Twiss effect of multi-spatial-mode thermal light at ultrashort timescale by two-photon absorption[J]. IEEE Photonics Journal, 10, 1-16(2018).
[29] DIELS J, FONTAINE J, MCMICHAEL I et al. Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy[J]. Applied Optics, 24, 1270-1282(1985).
[30] ROTH J, MURPHY T, XU C. Ultrasensitive and high-dynamic-range two-photon absorption in a GaAs photomultiplier tube[J]. Optics Letters, 27, 2076-2078(2002).
Get Citation
Copy Citation Text
Wei LIU, Libing HOU, Yingchun WU, Zhanming LI, Qiyao SUN, Shan LI, Weiguo ZHANG, Wenbo DUAN. Measurement method of correlated properties of broad spectral sources based on two-photon absorption[J]. Journal of Applied Optics, 2024, 45(6): 1158
Category:
Received: Dec. 6, 2023
Accepted: --
Published Online: Jan. 14, 2025
The Author Email: Wei LIU (wliugr@163.com)