Journal of Synthetic Crystals, Volume. 53, Issue 3, 355(2024)

Defect Structure of Lithium Niobate Crystals

LIU Hongde1, WANG Weiwei2, ZHANG Zhongzheng1, ZHENG Dahuai1, LIU Shiguo1, KONG Yongfa1、*, and XU Jingjun1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(123)

    [1] [1] WANG W H. The nature and properties of amorphous matter[J]. Progress in Physics, 2013, 33(5): 177-351 (in Chinese).

    [2] [2] OLAKANMI E O, COCHRANE R F, DALGARNO K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74: 401-477.

    [3] [3] DAWLEY N M, MARKSZ E J, HAGERSTROM A M, et al. Targeted chemical pressure yields tuneable millimetre-wave dielectric[J]. Nature Materials, 2020, 19: 176-181.

    [4] [4] SCHAEDEL L, TRICLIN S, CHRTIEN D, et al. Lattice defects induce microtubule self-renewal[J]. Nature Physics, 2019, 15: 830-838.

    [5] [5] SAKAI T K, BELYAKOV A, KAIBYSHEV R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions[J]. Progress in Materials Science, 2014, 60: 130-207.

    [6] [6] CUI Y, DUAN X F, HU J T, et al. Doping and electrical transport in silicon nanowires[J]. The Journal of Physical Chemistry B, 2000, 104(22): 5213-5216.

    [7] [7] CHEN D, KIM M, STEFANI B V, et al. Evidence of an identical firing-activated carrier-induced defect in monocrystalline and multicrystalline silicon[J]. Solar Energy Materials and Solar Cells, 2017, 172: 293-300.

    [8] [8] SAIDAMINOV M I, KIM J, JAIN A, et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air[J]. Nature Energy, 2018, 3: 648-654.

    [9] [9] LIU Z, QIU W D, PENG X M, et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation[J]. Advanced Materials, 2021, 33(43): e2103268.

    [10] [10] KONG Y F, BO F, WANG W W, et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 2020, 32(3): e1806452.

    [11] [11] ZHENG D H, WU J, SHANG J F, et al. Progress on electro-optic crystals for Q-switches[J]. Scientia Sinica (Technologica), 2017, 47(11): 1139-1148 (in Chinese).

    [12] [12] GAO B F, REN M X, ZHENG D H, et al. Long-lived lithium niobate: history and progress[J]. Journal of Synthetic Crystals, 2021, 50(7): 1183-1199 (in Chinese).

    [13] [13] VOLK T, WHLECKE M. Lithium niobate: defects, photorefraction and ferroelectric switching[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.

    [14] [14] GUARINO A, POBERAJ G, REZZONICO D, et al. Electro-optically tunable microring resonators in lithium niobate[J]. Nature Photonics, 2007, 1: 407-410.

    [15] [15] KSTERS M, STURMAN B, WERHEIT P, et al. Optical cleaning of congruent lithium niobate crystals[J]. Nature Photonics, 2009, 3: 510-513.

    [16] [16] LEVY M, OSGOOD R M, LIU R, et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing[J]. Applied Physics Letters, 1998, 73(16): 2293.

    [17] [17] RABIEI P, GUNTER P. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding[J]. Applied Physics Letters, 2004, 85(20): 4603.

    [18] [18] ZHANG M, WANG C, CHENG R, et al. Monolithic ultra-high-Q lithium niobate microring resonator[J]. Optica, 2017, 4(12): 1536.

    [19] [19] WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562: 101-104.

    [20] [20] WU R B, WANG M, XU J, et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness[J]. Nanomaterials, 2018, 8(11): 910.

    [21] [21] DESIATOV B, SHAMS-ANSARI A, ZHANG M, et al. Ultra-low-loss integrated visible photonics using thin-film lithium niobate[J]. Optica, 2019, 6(3): 380.

    [22] [22] ZHU D, SHAO L B, YU M J, et al. Integrated photonics on thin-film lithium niobate[EB/OL]. 2021: arXiv: 2102.11956. http://arxiv.org/abs/2102.11956

    [23] [23] BYER R L, YOUNG J F, FEIGELSON R S. Growth of high-quality LiNbO3 crystals from the congruent melt[J]. Journal of Applied Physics, 1970, 41(6): 2320-2325.

    [24] [24] O’BRYAN H M, GALLAGHER P K, BRANDLE C D. Congruent composition and Li-rich phase boundary of LiNbO3[J]. Journal of the American Ceramic Society, 1985, 68(9): 493-496.

    [25] [25] GRABMAIER B C, WERSING W, KOESTLER W. Properties of undoped and MgO-doped LiNbO3; correlation to the defect structure[J]. Journal of Crystal Growth, 1991, 110(3): 339-347.

    [26] [26] ABDI F, AILLERIE M, BOURSON P, et al. Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition[J]. Journal of Applied Physics, 1998, 84(4): 2251-2254.

    [27] [27] KONDO Y, FUKUDA T, YAMASHITA Y, et al. An increase of more than 30% in the electrooptic coefficients of Fe-doped and Ce-doped stoichiometric LiNbO3 crystals[J]. Japanese Journal of Applied Physics, 2000, 39(3S): 1477.

    [28] [28] NAKAMURA M, HIGUCHI S, TAKEKAWA S, et al. Optical damage resistance and refractive indices in near-stoichiometric MgO-doped LiNbO3[J]. Japanese Journal of Applied Physics, 2002, 41(2): 49-51.

    [29] [29] KONG Y F, LIU S G, ZHAO Y J, et al. Highly optical damage resistant crystal: zirconium-oxide-doped lithium niobate[J]. Applied Physics Letters, 2007, 91(8): 081908.

    [30] [30] PEITHMANN K, WIEBROCK A, BUSE K. Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared[J]. Applied Physics B, 1999, 68(5): 777-784.

    [31] [31] TIAN T, KONG Y F, LIU S G, et al. Photorefraction of molybdenum-doped lithium niobate crystals[J]. Optics Letters, 2012, 37(13): 2679-2681.

    [32] [32] DE MICHELI M, BOTINEAU J, NEVEU S, et al. Independent control of index and profiles in proton-exchanged lithium niobate guides[J]. Optics Letters, 1983, 8(2): 114-115.

    [33] [33] ZHANG D L, ZHANG Q, QIU C X, et al. Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals[J]. Scientific Reports, 2015, 5: 10018.

    [34] [34] LALLIER E. Rare-earth-doped glass and LiNbO3 waveguide lasers and optical amplifiers[J]. Applied Optics, 1992, 31(25): 5276-5282.

    [35] [35] KONG Y F, XU J J, ZHANG G Y, et al. Multifunctional optoelectronic material: lithium niobate crystal[M]. Beijing: Science Press, 2005 (in Chinese).

    [36] [36] FAY H, ALFORD W J, DESS H M. Dependence of second-harmonic phase-matching temperature in LiNbO3 crystals on melt composition[J]. Applied Physics Letters, 1968, 12(3): 89-92.

    [37] [37] LERNER P, LEGRAS C, DUMAS J P. Stoechiométrie des monocristaux de métaniobate de lithium[J]. Journal of Crystal Growth, 1968, 3/4: 231-235.

    [38] [38] PETERSON G E, CARNEVALE A. 93 Nb NMR linewidths in nonstoichiometric lithium niobate[J]. The Journal of Chemical Physics, 1972, 56(10): 4848-4851.

    [39] [39] ABRAHAMS S C, MARSH P. Defect structure dependence on composition in lithium niobate[J]. Acta Crystallographica Section B Structural Science, 1986, 42(1): 61-68.

    [40] [40] SAFARYAN F P, FEIGELSON R S, PETROSYAN A M. An approach to the defect structure analysis of lithium niobate single crystals[J]. Journal of Applied Physics, 1999, 85(12): 8079-8082.

    [41] [41] TAHIRI M, MASAIF N, JENNANE A. Defect structure analysis of lithium niobate single crystals and lithium tantalate ceramics with the next-nearest-neighbor interactions[J]. Indian Journal of Physics, 2012, 86(7): 595-600.

    [42] [42] CHEN K F, LI Y L, PENG C, et al. Microstructure and defect characteristics of lithium niobate with different Li concentrations[J]. Inorganic Chemistry Frontiers, 2021, 8(17): 4006-4013.

    [43] [43] SMYTH D M. Defects and transport in LiNbO3[J]. Ferroelectrics, 1983, 50(1): 93-102.

    [44] [44] SCHMIDT F, KOZUB A L, BIKTAGIROV T, et al. Free and defect-bound (bi)polarons in LiNbO3: atomic structure and spectroscopic signatures fromab initiocalculations[J]. Physical Review Research, 2020, 2(4): 043002.

    [45] [45] SCHIRMER O F, VON DER LINDE D. Two-photon- and X-ray-induced Nb4+ and O- small polarons in LiNbO3[J]. Applied Physics Letters, 1978, 33(1): 35-38.

    [46] [46] BRNING H, DIECKMANN V, SCHOKE B, et al. Small-polaron based holograms in LiNbO3 in the visible spectrum[J]. Optics Express, 2012, 20(12): 13326.

    [47] [47] SCHOKE B, IMLAU M, BRUNING H, et al. Transient light-induced absorption in periodically poled lithium niobate: small polaron hopping in the presence of a spatially modulated defect concentration[J]. Physical Review B, 2010, 81(13): 132301.

    [48] [48] REBOUTA L, DA SILVA M F, SOARES J C, et al. Lattice site of iron in LiNbO3 (Fe3+) by the PIXE/channelling technique[J]. Europhysics Letters (EPL), 1991, 14(6): 557-561.

    [49] [49] KONG Y F, LIU S G, XU J J. Recent advances in the photorefraction of doped lithium niobate crystals[J]. Materials, 2012, 5(10): 1954-1971.

    [50] [50] WANG S L, SHAN Y D, WANG W W, et al. Lone-pair electron effect induced a rapid photorefractive response in site-controlled LiNbO3∶Bi, M (M = Zn, In, Zr) crystals[J]. Applied Physics Letters, 2021, 118(19): 191902.

    [51] [51] SMITH R G, FRASER D B, DENTON R T, et al. Correlation of reduction in optically induced refractive-index inhomogeneity with OH content in LiTaO3 and LiNbO3[J]. Journal of Applied Physics, 1968, 39(10): 4600-4602.

    [52] [52] HERRINGTON J R, DISCHLER B, RUBER A, et al. An optical study of the stretching absorption band near 3 microns from OH- defects in LiNbO3[J]. Solid State Communications, 1973, 12(5): 351-354.

    [53] [53] KOVCS L, SZALAY V, CAPELLETTI R. Stoichiometry dependence of the OH- absorption band in LiNbO3 crystals[J]. Solid State Communications, 1984, 52(12): 1029-1031.

    [54] [54] KOVCS L, WOHLECKE M, JOVANOVIC' A, et al. Infrared absorption study of the OH vibrational band in LiNbO3 crystals[J]. Journal of Physics and Chemistry of Solids, 1991, 52(6): 797-803.

    [55] [55] KONG Y F, ZHANG W L, CHEN X J, et al. Absorption spectra of pure lithium niobate crystals[J]. Journal of Physics: Condensed Matter, 1999, 11(9): 2139-2143.

    [56] [56] KONG Y F, XU J J, ZHANG W L, et al. Proton site occupation in congruent lithium niobate crystal determined by nuclear magnetic resonance[J]. Physics Letters A, 1998, 250(1/2/3): 211-213.

    [57] [57] WANG W W, ZHENG D H, HU M Y, et al. Effect of defects on spontaneous polarization in pure and doped LiNbO3: first-principles calculations[J]. Materials, 2018, 12(1): 100.

    [58] [58] LENGYEL K, TIMN V, HERNNDEZ-LAGUNA A, et al. Structure of OH- defects in LiNbO3[J]. IOP Conference Series: Materials Science and Engineering, 2010, 15: 012015.

    [59] [59] KOVCS L, LENGYEL K, SZALAY V. Combination transitions due to stretching and librations of OH- ions in LiNbO3[J]. Optics Letters, 2011, 36(18): 3714-3716.

    [60] [60] KHLER T, ZSCHORNAK M, RDER C, et al. Chemical environment and occupation sites of hydrogen in LiMO3[J]. Journal of Materials Chemistry C, 2023, 11(2): 520-538.

    [61] [61] DRAVECZ G, KOVCS L. Determination of the crystal composition from the OH- vibrational spectrum in lithium niobate[J]. Applied Physics B, 2007, 88(2): 305-307.

    [62] [62] KOVCS L, SZALLER Z, LENGYEL K, et al. Hydroxyl ions in stoichiometric LiNbO3 crystals doped with optical damage resistant ions[J]. Optical Materials, 2014, 37: 55-58.

    [63] [63] VOLK T, WHLECKE M, RUBININA N. Optical damage resistance in lithium niobate[M]//Photorefractive Materials and Their Applications 2. New York, NY: Springer New York, 2007: 165-203.

    [64] [64] SCHAUFELE R F, WEBER M J. Raman scattering by lithium niobate[J]. Physical Review, 1966, 152(2): 705-708.

    [65] [65] YANG X C, LAN G X, LI B, et al. Raman spectra and directional dispersion in LiNbO3 and LiTaO3[J]. Physica Status Solidi B Basic Research, 1987, 142(1): 287-300.

    [66] [66] MALOVICHKO G I, GRACHEV V G, KOKANYAN E P, et al. Characterization of stoichiometric LiNbO3 grown from melts containing K2O[J]. Applied Physics A, 1993, 56(2): 103-108.

    [67] [67] SCHLARB U, KLAUER S, WESSELMANN M, et al. Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements[J]. Applied Physics A, 1993, 56(4): 311-315.

    [68] [68] RIDAH A, BOURSON P, FONTANA M D, et al. The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3[J]. Journal of Physics: Condensed Matter, 1997, 9(44): 9687-9693.

    [69] [69] KONG Y F, XU J J, CHEN X J, et al. Ilmenite-like stacking defect in nonstoichiometric lithium niobate crystals investigated by Raman scattering spectra[J]. Journal of Applied Physics, 2000, 87(9): 4410-4414.

    [70] [70] BARAN E J, BOTTO I L, MUTO F, et al. Vibrational spectra of the ilmenite modifications of LiNbO3 and NaNbO3[J]. Journal of Materials Science Letters, 1986, 5(6): 671-672.

    [71] [71] SIDOROV N V, YANICHEV A A, CHUFYREV P G, et al. Raman spectra of photorefractive lithium niobate single crystals[J]. Journal of Applied Spectroscopy, 2010, 77(1): 110-114.

    [72] [72] FONTANA M D, BOURSON P. Microstructure and defects probed by Raman spectroscopy in lithium niobate crystals and devices[J]. Applied Physics Reviews, 2015, 2(4): 040602.

    [73] [73] SIDOROV N, PALATNIKOV M, KADETOVA A. Raman scattering in non-stoichiometric lithium niobate crystals with a low photorefractive effect[J]. Crystals, 2019, 9(10): 535.

    [74] [74] XUE D F, HE X K. Dopant occupancy and structural stability of doped lithium niobate crystals[J]. Physical Review B, 2006, 73(6): 064113.

    [75] [75] HE Y L, XUE D F. Bond-energy study of photorefractive properties of doped lithium niobate crystals[J]. The Journal of Physical Chemistry C, 2007, 111(35): 13238-13243.

    [76] [76] LI L L, LI Y L, ZHAO X. Hybrid density functional theory insight into the stability and microscopic properties of Bi-doped LiNbO3: lone electron pair effect[J]. Physical Review B, 2017, 96(11): 115118.

    [77] [77] WANG W W, ZHONG Y, ZHENG D H, et al. P-Type conductivity mechanism and defect structure of nitrogen-doped LiNbO3 from first-principles calculations[J]. Physical Chemistry Chemical Physics, 2020, 22(1): 20-27.

    [78] [78] FENG D, MING N B, HONG J F, et al. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains[J]. Applied Physics Letters, 1980, 37(7): 607-609.

    [79] [79] ZHANG Z Y, ZHU Y Y, ZHU S N, et al. Domain inversion by Li2O out-diffusion or proton exchange followed by heat treatment in LiTaO3 and LiNbO3[J]. Physica Status Solidi (a), 1996, 153(1): 275-279.

    [80] [80] THIELE F, VOM BRUCH F, QUIRING V, et al. Cryogenic electro-optic polarisation conversion in titanium in-diffused lithium niobate waveguides[J]. Optics Express, 2020, 28(20): 28961-28968.

    [81] [81] RAMBU A P, TIRON V, ONICIUC E, et al. Spontaneous polarization reversal induced by proton exchange in Z-cut lithium niobate α-phase channel waveguides[J]. Materials, 2021, 14(23): 7127.

    [82] [82] KOKHANCHIK L S, EMELIN E V, SIROTKIN V V. Large regular arrays with submicron domains written by low-voltage e-beam on -Z cut of lithium niobate[J]. Optical Materials, 2022, 128: 112405.

    [83] [83] KOKHANCHIK L S, EMELIN E V, SIROTKIN V V, et al. Deepening of domains at e-beam writing on the -Z surface of lithium niobate[J]. Journal of Physics D: Applied Physics, 2022, 55(19): 195302.

    [84] [84] ALIKIN Y M, TURYGIN A P, ALIKIN D O, et al. Interaction of wedge-like domains created by local polarization reversal on nonpolar cut of lithium niobate[J]. Ferroelectrics, 2023, 604(1): 25-31.

    [85] [85] KIPENKO I A, AKHMATKHANOV A R, CHUVAKOVA M A, et al. Domain wall motion and Barkhausen pulses in lithium niobate with tailored regular 2D domain structure[J]. Ferroelectrics, 2023, 604(1): 40-46.

    [86] [86] GUO J X, CHEN W W, CHEN H S, et al. Recent progress in optical control of ferroelectric polarization[J]. Advanced Optical Materials, 2021, 9(23): 2002146.

    [87] [87] WANG X L, CAO Q, WANG R N, et al. Domain growth driven by a femtosecond laser in lithium niobate crystal[J]. Optics Letters, 2023, 48(3): 566-569.

    [88] [88] VALDIVIA C E, SONES C L, MAILIS S, et al. Ultrashort-pulse optically-assisted domain engineering in lithium niobate[J]. Ferroelectrics, 2006, 340(1): 75-82.

    [89] [89] WEBJORN J, LAURELL F, ARVIDSSON G. Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic generation[J]. Journal of Lightwave Technology, 1989, 7(10): 1597-1600.

    [90] [90] YAMADA M, NADA N, SAITOH M, et al. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation[J]. Applied Physics Letters, 1993, 62(5): 435-436.

    [91] [91] ZHANG Z Y, ZHU Y Y, ZHU S N, et al. A new method for preparing periodic domain inversion of LiNbO3[J]. Journal of Synthetic Crystals, 1995, 24(1): 1-4 (in Chinese).

    [92] [92] CHEN Y L, LOU C B, XU J J, et al. Domain switching characteristics of the near stoichiometric LiNbO3 doped with MgO[J]. Journal of Applied Physics, 2003, 94(5): 3350-3352.

    [93] [93] ZENG H, KONG Y F, LIU H D, et al. Light-induced superlow electric field for domain reversal in near-stoichiometric magnesium-doped lithium niobate[J]. Journal of Applied Physics, 2010, 107(6): 063514.

    [94] [94] FUJIMURA M, SOHMURA T, SUHARA T. Fabrication of domain-inverted gratings in MgO∶LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature[J]. Electronics Letters, 2003, 39(9): 719.

    [95] [95] WENGLER M C, FASSBENDER B, SOERGEL E, et al. Impact of ultraviolet light on coercive field, poling dynamics and poling quality of various lithium niobate crystals from different sources[J]. Journal of Applied Physics, 2004, 96(5): 2816-2820.

    [96] [96] WENGLER M C, HEINEMEYER U, SOERGEL E, et al. Ultraviolet light-assisted domain inversion in magnesium-doped lithium niobate crystals[J]. Journal of Applied Physics, 2005, 98(6): 064104.

    [97] [97] WANG W J, KONG Y F, LIU H D, et al. Light-induced domain reversal in doped lithium niobate crystals[J]. Journal of Applied Physics, 2009, 105(4): 043105.

    [98] [98] ZHU H S, CHEN X F, CHEN H Y, et al. Formation of domain reversal by direct irradiation with femtosecond laser in lithium niobate[J]. Chinese Optics Letters, 2009, 7(2): 169-172.

    [99] [99] XU X Y, WANG T X, CHEN P C, et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains[J]. Nature, 2022, 609: 496-501.

    [100] [100] ASHKIN A, BOYD G D, DZIEDZIC J M, et al. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3[J]. Applied Physics Letters, 1966, 9(1): 72-74.

    [101] [101] ZHONG G, JIAN J, WU Z. Measurement of optically induced refractive-index change of lithium niobate doped with different concentration of MgO[J]. Proceedings of the 11th International Quantum Electronics Conference, 1980.

    [102] [102] VOLK T R, PRYALKIN V I, RUBININA N M. Optical-damage-resistant LiNbO3∶Zn crystal[J]. Optics Letters, 1990, 15(18): 996-998.

    [103] [103] YAMAMOTO J K, KITAMURA K, IYI N, et al. Increased optical damage resistance in Sc2O3-doped LiNbO3[J]. Applied Physics Letters, 1992, 61(18): 2156-2158.

    [104] [104] KONG Y F, WEN J K, WANG H F. New doped lithium niobate crystal with high resistance to photorefraction—LiNbO3∶In[J]. Applied Physics Letters, 1995, 66(3): 280-281.

    [105] [105] LI S Q, LIU S G, KONG Y F, et al. The optical damage resistance and absorption spectra of LiNbO3∶Hf crystals[J]. Journal of Physics Condensed Matter, 2006, 18(13): 3527-3534.

    [106] [106] WANG L Z, LIU S G, KONG Y F, et al. Increased optical-damage resistance in tin-doped lithium niobate[J]. Optics Letters, 2010, 35(6): 883-885.

    [107] [107] LIU F C, KONG Y F, LI W, et al. High resistance against ultraviolet photorefraction in zirconium-doped lithium niobate crystals[J]. Optics Letters, 2010, 35(1): 10-12.

    [108] [108] IYI N, KITAMURA K, YAJIMA Y, et al. Defect structure model of MgO-doped LiNbO3[J]. Journal of Solid State Chemistry, 1995, 118(1): 148-152.

    [109] [109] LIU J J, ZHANG W L, ZHANG G Y. Defect chemistry analysis of the defect structure in Mg-doped LiNbO3 crystals[J]. Physica Status Solidi (a), 1996, 156(2): 285-291.

    [110] [110] AILLERIE M, BOURSON P, MOSTEFA M, et al. Photorefractive damage in congruent LiNbO3. part II. magnesium doped lithium niobate crystals[J]. Journal of Physics: Conference Series, 2013, 416: 012002.

    [111] [111] LI Y L, LI L L, CHENG X F, et al. Microscopic properties of Mg in Li and Nb sites of LiNbO3 by first-principle hybrid functional: formation and related optical properties[J]. Journal of Physical Chemistry C, 2017, 121(16): 8968-8975.

    [112] [112] ZHENG D H, KONG Y F, LIU S G, et al. The simultaneous enhancement of photorefraction and optical damage resistance in MgO and Bi2O3 Co-doped LiNbO3 crystals[J]. Scientific Reports, 2016, 6: 20308.

    [113] [113] JIANG H W, LUO R, LIANG H X, et al. Fast response of photorefraction in lithium niobate microresonators[J]. Optics Letters, 2017, 42(17): 3267-3270.

    [114] [114] LU J J, SURYA J B, LIU X W, et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W[J]. Optica, 2019, 6(12): 1455.

    [115] [115] HU H, GUI L, RICKEN R, et al. Towards nonlinear photonic wires in lithium niobate[C]//SPIE OPTO. Proc SPIE 7604, Integrated Optics: Devices, Materials, and Technologies XIV, San Francisco, California, USA. 2010, 7604: 183-194.

    [116] [116] WU R B, ZHANG J H, YAO N, et al. Lithium niobate micro-disk resonators of quality factors above 107[J]. Optics Letters, 2018, 43(17): 4116-4119.

    [117] [117] ZHANG M, BUSCAINO B, WANG C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568: 373-377.

    [118] [118] WANG S H, YANG L K, CHENG R S, et al. Incorporation of erbium ions into thin-film lithium niobate integrated photonics[J]. Applied Physics Letters, 2020, 116(15): 151103.

    [119] [119] WANG Z, FANG Z W, LIU Z X, et al. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator[J]. Optics Letters, 2021, 46(2): 380-383.

    [120] [120] LIU Y A, YAN X S, WU J W, et al. On-chip erbium-doped lithium niobate microcavity laser[J]. Science China Physics, Mechanics & Astronomy, 2020, 64(3): 234262.

    [121] [121] LUO Q, HAO Z Z, YANG C, et al. Microdisk lasers on an erbium-doped lithium-niobite chip[J]. Science China Physics, Mechanics & Astronomy, 2020, 64(3): 234263.

    [122] [122] XIE Z D, ZHU S N. LiNbO3 crystals: from bulk to film[J]. Advanced Photonics, 2022, 4(3): 030502.

    [123] [123] LUO Q, BO F, KONG Y F, et al. Advances in lithium niobate thin-film lasers and amplifiers: a review[J]. Advanced Photonics, 2023, 5(3): 034002.

    Tools

    Get Citation

    Copy Citation Text

    LIU Hongde, WANG Weiwei, ZHANG Zhongzheng, ZHENG Dahuai, LIU Shiguo, KONG Yongfa, XU Jingjun. Defect Structure of Lithium Niobate Crystals[J]. Journal of Synthetic Crystals, 2024, 53(3): 355

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 15, 2024

    Accepted: --

    Published Online: Jul. 30, 2024

    The Author Email: KONG Yongfa (kongyf@nankai.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics