Laser Technology, Volume. 44, Issue 4, 424(2020)

Goos-Hnchen shift in graphene-hexagonal boron nitride structure

HE Yifan, LIU Chenchen, JIANG Qingyun, and YIN Chengping*
Author Affiliations
  • [in Chinese]
  • show less
    References(20)

    [1] [1] GOOS F, HNCHEN H. A new and fundamental attempt at total reflection[J]. Annalen der Physik, 1947, 436(7):333-346.

    [2] [2] RENARD R H. Total reflection:A new evaluation of the Goos-Hnchen shift[J]. Journal of the Optical Society of America, 1964,54(10):1190-1197.

    [3] [3] LAI H M, KWOK C W, LOO Y W, et al. Energy-flux pattern in the Goos-Hnchen effect[J]. Physical Review, 2000, E62(5):7330-7339.

    [4] [4] ARTMANN K. Calculation of the lateral displacement of the total reflected beam[J]. Annalen der Physik, 1948, 437(1/2): 87-102.

    [5] [5] ZHAO B, GAO L. Temperature-dependent Goos-Hnchen shift on the interface of metal/dielectric composites [J]. Optics Express, 2009, 17(24):21433-21441.

    [6] [6] WANG X, YIN C, SUN J, et al. High-sensitivity temperature sensor using the ultrahigh order mode-enhanced Goos-Hnchen effect [J]. Optics Express, 2013, 21(11):13380-13385.

    [7] [7] YI W, LI H, CAO Z, et al. Oscillating wave sensor based on the Goos-Hnchen effect [J]. Applied Physics Letters, 2008, 92(6):061117-061119.

    [8] [8] FELBACQ D, MOREAU A, SMALI R. Goos-Hnchen effect in the gaps of photonic crystals[J]. Optics Letters, 2003, 28(18):1633-1635.

    [9] [9] WANG L G, ZHU S Y. Giant lateral shift of a light beam at the defect mode in one-dimensional photonic crystals [J]. Optics Letters, 2006, 31(1):101-103.

    [10] [10] JIANG L, WANG Q, XIANG Y, et al. Electrically tunable Goos-Hnchen shift of light beam reflected from a graphene-on-dielectric surface[J]. IEEE Photonics Journal, 2013, 5(3):6500108.

    [11] [11] FAN Y, SHEN N H, ZHANG F, et al. Electrically tunable Goos-Hnchen effect with graphene in the terahertz regime [J]. Advanced Optical Materials, 2016, 4(11):1824-1828.

    [12] [12] MA P, GAO L. Large and tunable lateral shifts in one-dimensional PT-symmetric layered structures[J]. Optics Express, 2017, 25(9):9676-9688.

    [13] [13] WANG C, WANG F, CEN H, et al. Electrically tunable Goos-Hnchen shifts in weakly absorbing epsilon-near-zero slab[J]. Optical Materials Express, 2018, 8(4):718-726.

    [14] [14] XU G, XU Y, SUN J , et al. Tunable and nonreciprocal Goos-Hnchen shifts on reflection from a graphene-coated gyroelectric slab[J]. Physics Letters, 2016, A380(29):2329-2333.

    [15] [15] FELBACQ D, MOREAU A, SMALI R. Goos-Hnchen effect in the gaps of photonic crystals[J]. Optics Letters, 2003, 28(18):1633-1635.

    [16] [16] WEN J S, ZHANG J X, WANG L G, et al. Goos-Hnchen shifts in an epsilon-near-zero slab[J]. Journal of the Optical Society of America, 2017, B34(11):2310-2316.

    [17] [17] DEAN C R, YOUNG A F, MERIC I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(10):722-726.

    [18] [18] WANG L G, CHEN H, ZHU S Y. Large negative Goos-Hnchen shift from a weakly absorbing dielectric slab [J]. Optics Letters, 2005, 30(21):2936-2938.

    [19] [19] SHU W, REN Z, LUO H, et al. Brewster angle for anisotropic materials from the extinction theorem [J]. Applied Physics, 2007, A87(2):297-303.

    [20] [20] CASIRAGHI C, HARTSCHUH A, LIDORIKIS E, et al. Rayleigh imaging of graphene and graphene layers [J]. Nano Letters, 2007, 7(9):2711-2717.

    Tools

    Get Citation

    Copy Citation Text

    HE Yifan, LIU Chenchen, JIANG Qingyun, YIN Chengping. Goos-Hnchen shift in graphene-hexagonal boron nitride structure[J]. Laser Technology, 2020, 44(4): 424

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 19, 2019

    Accepted: --

    Published Online: Jul. 16, 2020

    The Author Email: YIN Chengping (yinchengping1979@163.com)

    DOI:10.7510/jgjs.issn.1001-3806.2020.04.005

    Topics