Laser Technology, Volume. 44, Issue 4, 424(2020)
Goos-Hnchen shift in graphene-hexagonal boron nitride structure
[1] [1] GOOS F, HNCHEN H. A new and fundamental attempt at total reflection[J]. Annalen der Physik, 1947, 436(7):333-346.
[2] [2] RENARD R H. Total reflection:A new evaluation of the Goos-Hnchen shift[J]. Journal of the Optical Society of America, 1964,54(10):1190-1197.
[3] [3] LAI H M, KWOK C W, LOO Y W, et al. Energy-flux pattern in the Goos-Hnchen effect[J]. Physical Review, 2000, E62(5):7330-7339.
[4] [4] ARTMANN K. Calculation of the lateral displacement of the total reflected beam[J]. Annalen der Physik, 1948, 437(1/2): 87-102.
[5] [5] ZHAO B, GAO L. Temperature-dependent Goos-Hnchen shift on the interface of metal/dielectric composites [J]. Optics Express, 2009, 17(24):21433-21441.
[6] [6] WANG X, YIN C, SUN J, et al. High-sensitivity temperature sensor using the ultrahigh order mode-enhanced Goos-Hnchen effect [J]. Optics Express, 2013, 21(11):13380-13385.
[7] [7] YI W, LI H, CAO Z, et al. Oscillating wave sensor based on the Goos-Hnchen effect [J]. Applied Physics Letters, 2008, 92(6):061117-061119.
[8] [8] FELBACQ D, MOREAU A, SMALI R. Goos-Hnchen effect in the gaps of photonic crystals[J]. Optics Letters, 2003, 28(18):1633-1635.
[9] [9] WANG L G, ZHU S Y. Giant lateral shift of a light beam at the defect mode in one-dimensional photonic crystals [J]. Optics Letters, 2006, 31(1):101-103.
[10] [10] JIANG L, WANG Q, XIANG Y, et al. Electrically tunable Goos-Hnchen shift of light beam reflected from a graphene-on-dielectric surface[J]. IEEE Photonics Journal, 2013, 5(3):6500108.
[11] [11] FAN Y, SHEN N H, ZHANG F, et al. Electrically tunable Goos-Hnchen effect with graphene in the terahertz regime [J]. Advanced Optical Materials, 2016, 4(11):1824-1828.
[12] [12] MA P, GAO L. Large and tunable lateral shifts in one-dimensional PT-symmetric layered structures[J]. Optics Express, 2017, 25(9):9676-9688.
[13] [13] WANG C, WANG F, CEN H, et al. Electrically tunable Goos-Hnchen shifts in weakly absorbing epsilon-near-zero slab[J]. Optical Materials Express, 2018, 8(4):718-726.
[14] [14] XU G, XU Y, SUN J , et al. Tunable and nonreciprocal Goos-Hnchen shifts on reflection from a graphene-coated gyroelectric slab[J]. Physics Letters, 2016, A380(29):2329-2333.
[15] [15] FELBACQ D, MOREAU A, SMALI R. Goos-Hnchen effect in the gaps of photonic crystals[J]. Optics Letters, 2003, 28(18):1633-1635.
[16] [16] WEN J S, ZHANG J X, WANG L G, et al. Goos-Hnchen shifts in an epsilon-near-zero slab[J]. Journal of the Optical Society of America, 2017, B34(11):2310-2316.
[17] [17] DEAN C R, YOUNG A F, MERIC I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(10):722-726.
[18] [18] WANG L G, CHEN H, ZHU S Y. Large negative Goos-Hnchen shift from a weakly absorbing dielectric slab [J]. Optics Letters, 2005, 30(21):2936-2938.
[19] [19] SHU W, REN Z, LUO H, et al. Brewster angle for anisotropic materials from the extinction theorem [J]. Applied Physics, 2007, A87(2):297-303.
[20] [20] CASIRAGHI C, HARTSCHUH A, LIDORIKIS E, et al. Rayleigh imaging of graphene and graphene layers [J]. Nano Letters, 2007, 7(9):2711-2717.
Get Citation
Copy Citation Text
HE Yifan, LIU Chenchen, JIANG Qingyun, YIN Chengping. Goos-Hnchen shift in graphene-hexagonal boron nitride structure[J]. Laser Technology, 2020, 44(4): 424
Category:
Received: Sep. 19, 2019
Accepted: --
Published Online: Jul. 16, 2020
The Author Email: YIN Chengping (yinchengping1979@163.com)