Journal of the Chinese Ceramic Society, Volume. 52, Issue 4, 1183(2024)

Effect of ZnO Doping on Energy Storage Properties of Strontium Titanate-Based Ceramics

WANG Jiarui, LIU Yang, LIU Lulu, WANG Di, WANG Chao, HAO Jigong*, and LI Wei
Author Affiliations
  • [in Chinese]
  • show less
    References(24)

    [1] [1] DU Jinhua, LI Yong, SUN Ningning, et al. J Chin Ceram Soc, 2022, 50(3): 608-624.

    [2] [2] YAO Z H, SONG Z, HAO H, et al. Homogeneous/inhomogeneous- structured dielectrics and their energy-storage performances[J]. Adv Mater, 2017, 29(20): 1601727.

    [3] [3] JIANG Ying, SHEN Xinchang, GUO Limin, et al. J Mater Eng, 2022, 50(4): 96-103.

    [4] [4] YANG L T, KONG X, LI F, et al. Perovskite lead-free dielectrics for energy storage applications[J]. Prog Mater Sci, 2019, 102: 72-108.

    [5] [5] ZHU X P, SHI P, KANG R R, et al. Enhanced energy storage density of Sr0.7BixTiO3 lead-free relaxor ceramics via A-site defect and grain size tuning[J]. Chem Eng J, 2021, 420: 129808.

    [6] [6] YANG W J, HUANG F Z, SHU L H, et al. Enhanced recoverable energy storage density and efficiency in (1?x)Ba0.85Ca0.15Zr0.1Ti0.9O3-xSrTiO3- MnO2 lead-free ceramics[J]. J Mater Chem C, 2022, 10(10): 3876-3885.

    [7] [7] YAN F, BAI H R, GE G L, et al. Composition and structure optimized BiFeO3-SrTiO3 lead-free ceramics with ultrahigh energy storage performance[J]. Small, 2022, 18(10): 2106515.

    [8] [8] LIU J K, DING Y Q, LI C Y, et al. A synergistic two-step optimization design enables high capacitive energy storage in lead-free Sr0.7Bi0.2TiO3-based relaxor ferroelectric ceramics[J]. J Mater Chem A, 2023, 11(2): 609-620.

    [9] [9] YANG S L, ZUO C Y, DU F, et al. Submicron Sr0.7Bi0.2TiO3 dielectric ceramics for energy storage via a two-step method aided by cold sintering process[J]. Mater Des, 2023, 225: 111447.

    [10] [10] LIU L L, CHU B K, LI P, et al. Achieving high energy storage performance and ultrafast discharge speed in SrTiO3-based ceramics via a synergistic effect of chemical modification and defect chemistry[J]. Chem Eng J, 2022, 429: 132548.

    [11] [11] LIU L, LIU Y, HAO J, et al. Multi-scale collaborative optimization of SrTiO3-based energy storage ceramics with high performance and excellent stability[J]. Nano Energy, 2023, 109: 108275.

    [12] [12] YAO Y, LI Y, SUN N N, et al. Enhanced dielectric and energy-storage properties in ZnO-doped 0.9(0.94Na0.5Bi0.5TiO3-0.06BaTiO3)-0.1NaNbO3 ceramics[J]. Ceram Int, 2018, 44(6): 5961-5966.

    [13] [13] ZHANG Zhihao, LI Junyan, LIU Lulu, et al. Photoelectric properties of K0.5Bi4.5-xEuxTi4O15 high temperature bismuth layered piezoelectric ceramics[J]. Nat Sci, 2019, 32(1): 88-92.

    [14] [14] EAKSUWANCHAI P, JIANSIRISOMBOON S, WATCHARAPASORN A. Effect of lanthanum additive on electrical and thermal properties of bismuth sodium titanate ceramics[J]. Integr Ferroelectr, 2013, 149(1): 83-88.

    [15] [15] ANG C, YU Z. Dielectric and ferroelectric properties in (Sr, Ni, Na)TiO3 solid solutions[J]. J Appl Phys, 2010, 107(11): 114106.

    [16] [16] ZHAO P, TANG B, SI F, et al. Novel Ca doped Sr0.7Bi0.2TiO3 lead-free relaxor ferroelectrics with high energy density and efficiency[J]. J Eur Ceram Soc, 2020, 40(5): 1938-1946.

    [17] [17] KONG X, YANG L T, CHENG Z X, et al. Bi(Mg0.5Hf0.5)O3-modified SrTiO3 lead-free ceramics for high-temperature energy storage capacitors[J]. J Mater Res, 2021, 36(5): 1171-1181.

    [18] [18] DING Y Q, LI P, HE J T, et al. Simultaneously achieving high energy-storage efficiency and density in Bi-modified SrTiO3-based relaxor ferroelectrics by ion selective engineering[J]. Compos B Eng, 2022, 230: 109493.

    [19] [19] JAN A, LIU H X, HAO H, et al. Lead-free relaxor-ferroelectric ceramics for high-energy-storage applications[J]. J Mater Chem C, 2020, 8(26): 8962-8970.

    [20] [20] GUO X, PU Y P, WANG W, et al. Ultrahigh energy storage performance and fast charge-discharge capability in Dy- modified SrTiO3 linear ceramics with high optical transmissivity by defect and interface engineering[J]. Ceram Int, 2020, 46(13): 21719-21727.

    [21] [21] CUI C W, PU Y P. Improvement of energy storage density with trace amounts of ZrO2 additives fabricated by wet-chemical method[J]. J Alloys Compd, 2018, 747: 495-504.

    [22] [22] LI W B, ZHOU D, PANG L X. Structure and energy storage properties of Mn-doped (Ba, Sr)TiO3-MgO composite ceramics[J]. J Mater Sci Mater Electron, 2017, 28(12): 8749-8754.

    [23] [23] YANG H B, YAN F, LIN Y, et al. Novel strontium titanate-based lead-free ceramics for high-energy storage applications[J]. ACS Sustain Chem Eng, 2017, 5(11): 10215-10222.

    [24] [24] ZHOU X F, XUE G L, SU Y C, et al. Optimized dielectric energy storage performance in ZnO-modified Bi0.5Na0.5TiO3-Sr0.7Bi0.2□0.1TiO3 ceramics with composite structure and element segregation[J]. Chem Eng J, 2023, 458: 141449.

    Tools

    Get Citation

    Copy Citation Text

    WANG Jiarui, LIU Yang, LIU Lulu, WANG Di, WANG Chao, HAO Jigong, LI Wei. Effect of ZnO Doping on Energy Storage Properties of Strontium Titanate-Based Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1183

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 26, 2023

    Accepted: --

    Published Online: Aug. 19, 2024

    The Author Email: HAO Jigong (haojigong@lcu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20230742

    Topics