Journal of the Chinese Ceramic Society, Volume. 52, Issue 4, 1183(2024)
Effect of ZnO Doping on Energy Storage Properties of Strontium Titanate-Based Ceramics
[1] [1] DU Jinhua, LI Yong, SUN Ningning, et al. J Chin Ceram Soc, 2022, 50(3): 608-624.
[2] [2] YAO Z H, SONG Z, HAO H, et al. Homogeneous/inhomogeneous- structured dielectrics and their energy-storage performances[J]. Adv Mater, 2017, 29(20): 1601727.
[3] [3] JIANG Ying, SHEN Xinchang, GUO Limin, et al. J Mater Eng, 2022, 50(4): 96-103.
[4] [4] YANG L T, KONG X, LI F, et al. Perovskite lead-free dielectrics for energy storage applications[J]. Prog Mater Sci, 2019, 102: 72-108.
[5] [5] ZHU X P, SHI P, KANG R R, et al. Enhanced energy storage density of Sr0.7BixTiO3 lead-free relaxor ceramics via A-site defect and grain size tuning[J]. Chem Eng J, 2021, 420: 129808.
[6] [6] YANG W J, HUANG F Z, SHU L H, et al. Enhanced recoverable energy storage density and efficiency in (1?x)Ba0.85Ca0.15Zr0.1Ti0.9O3-xSrTiO3- MnO2 lead-free ceramics[J]. J Mater Chem C, 2022, 10(10): 3876-3885.
[7] [7] YAN F, BAI H R, GE G L, et al. Composition and structure optimized BiFeO3-SrTiO3 lead-free ceramics with ultrahigh energy storage performance[J]. Small, 2022, 18(10): 2106515.
[8] [8] LIU J K, DING Y Q, LI C Y, et al. A synergistic two-step optimization design enables high capacitive energy storage in lead-free Sr0.7Bi0.2TiO3-based relaxor ferroelectric ceramics[J]. J Mater Chem A, 2023, 11(2): 609-620.
[9] [9] YANG S L, ZUO C Y, DU F, et al. Submicron Sr0.7Bi0.2TiO3 dielectric ceramics for energy storage via a two-step method aided by cold sintering process[J]. Mater Des, 2023, 225: 111447.
[10] [10] LIU L L, CHU B K, LI P, et al. Achieving high energy storage performance and ultrafast discharge speed in SrTiO3-based ceramics via a synergistic effect of chemical modification and defect chemistry[J]. Chem Eng J, 2022, 429: 132548.
[11] [11] LIU L, LIU Y, HAO J, et al. Multi-scale collaborative optimization of SrTiO3-based energy storage ceramics with high performance and excellent stability[J]. Nano Energy, 2023, 109: 108275.
[12] [12] YAO Y, LI Y, SUN N N, et al. Enhanced dielectric and energy-storage properties in ZnO-doped 0.9(0.94Na0.5Bi0.5TiO3-0.06BaTiO3)-0.1NaNbO3 ceramics[J]. Ceram Int, 2018, 44(6): 5961-5966.
[13] [13] ZHANG Zhihao, LI Junyan, LIU Lulu, et al. Photoelectric properties of K0.5Bi4.5-xEuxTi4O15 high temperature bismuth layered piezoelectric ceramics[J]. Nat Sci, 2019, 32(1): 88-92.
[14] [14] EAKSUWANCHAI P, JIANSIRISOMBOON S, WATCHARAPASORN A. Effect of lanthanum additive on electrical and thermal properties of bismuth sodium titanate ceramics[J]. Integr Ferroelectr, 2013, 149(1): 83-88.
[15] [15] ANG C, YU Z. Dielectric and ferroelectric properties in (Sr, Ni, Na)TiO3 solid solutions[J]. J Appl Phys, 2010, 107(11): 114106.
[16] [16] ZHAO P, TANG B, SI F, et al. Novel Ca doped Sr0.7Bi0.2TiO3 lead-free relaxor ferroelectrics with high energy density and efficiency[J]. J Eur Ceram Soc, 2020, 40(5): 1938-1946.
[17] [17] KONG X, YANG L T, CHENG Z X, et al. Bi(Mg0.5Hf0.5)O3-modified SrTiO3 lead-free ceramics for high-temperature energy storage capacitors[J]. J Mater Res, 2021, 36(5): 1171-1181.
[18] [18] DING Y Q, LI P, HE J T, et al. Simultaneously achieving high energy-storage efficiency and density in Bi-modified SrTiO3-based relaxor ferroelectrics by ion selective engineering[J]. Compos B Eng, 2022, 230: 109493.
[19] [19] JAN A, LIU H X, HAO H, et al. Lead-free relaxor-ferroelectric ceramics for high-energy-storage applications[J]. J Mater Chem C, 2020, 8(26): 8962-8970.
[20] [20] GUO X, PU Y P, WANG W, et al. Ultrahigh energy storage performance and fast charge-discharge capability in Dy- modified SrTiO3 linear ceramics with high optical transmissivity by defect and interface engineering[J]. Ceram Int, 2020, 46(13): 21719-21727.
[21] [21] CUI C W, PU Y P. Improvement of energy storage density with trace amounts of ZrO2 additives fabricated by wet-chemical method[J]. J Alloys Compd, 2018, 747: 495-504.
[22] [22] LI W B, ZHOU D, PANG L X. Structure and energy storage properties of Mn-doped (Ba, Sr)TiO3-MgO composite ceramics[J]. J Mater Sci Mater Electron, 2017, 28(12): 8749-8754.
[23] [23] YANG H B, YAN F, LIN Y, et al. Novel strontium titanate-based lead-free ceramics for high-energy storage applications[J]. ACS Sustain Chem Eng, 2017, 5(11): 10215-10222.
[24] [24] ZHOU X F, XUE G L, SU Y C, et al. Optimized dielectric energy storage performance in ZnO-modified Bi0.5Na0.5TiO3-Sr0.7Bi0.2□0.1TiO3 ceramics with composite structure and element segregation[J]. Chem Eng J, 2023, 458: 141449.
Get Citation
Copy Citation Text
WANG Jiarui, LIU Yang, LIU Lulu, WANG Di, WANG Chao, HAO Jigong, LI Wei. Effect of ZnO Doping on Energy Storage Properties of Strontium Titanate-Based Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1183
Category:
Received: Sep. 26, 2023
Accepted: --
Published Online: Aug. 19, 2024
The Author Email: HAO Jigong (haojigong@lcu.edu.cn)