Acta Optica Sinica, Volume. 45, Issue 11, 1110002(2025)
Substation Intrusion Event Identification Method Based on DAS and GADF-CAFM-MSCNN
Fig. 3. Structure of CAFM. (a) Channel attention module; (b) spatial attention module; (c) cross-attention module
Fig. 5. One-dimensional vibration curves for different intrusion events. (a) No invasion; (b) striking; (c) climbing; (d) trampling; (e) shoveling
Fig. 6. Corresponding GADF and GASF images of one-dimensional vibration curves. (a) No invasion; (b) striking; (c) climbing; (d) trampling; (e) shoveling
Fig. 9. Confusion matrices of CAFM-MSCNN for GADF and GASF testing sets. (a) GADF; (b) GASF
Fig. 10. Output characteristics of different parts of CAFM-MSCNN. (a) Original signal; (b) MSCNN; (c) CAFM; (d) output layer
Fig. 11. Accuracy curves and loss function curves of CAFM-MSCNN and MSCNN for training sets and validation sets. (a) CAFM-MSCNN, accuracy; (b) CAFM-MSCNN, loss function; (c) MSCNN, accuracy; (d) MSCNN, loss function
Fig. 12. Accuracy and loss functions for training sets and validation sets of four traditional models. (a) CNN, accuracy; (b) CNN, loss function; (c) TCN, accuracy; (d) TCN, loss function; (e) LSTM network, accuracy; (f) LSTM network, loss function; (g) CNN-LSTM, accuracy; (h) CNN-LSTM, loss function
|
|
|
|
|
Get Citation
Copy Citation Text
Zhiniu Xu, Tianjie Ma, Yangyang Cai, Lijuan Zhao. Substation Intrusion Event Identification Method Based on DAS and GADF-CAFM-MSCNN[J]. Acta Optica Sinica, 2025, 45(11): 1110002
Category: Image Processing
Received: Nov. 26, 2024
Accepted: Apr. 27, 2025
Published Online: Jun. 24, 2025
The Author Email: Lijuan Zhao (hdzlj@126.com)
CSTR:32393.14.AOS241793