Computer Engineering, Volume. 51, Issue 8, 292(2025)
A Study on Improved Faster R-CNN Model for Multi-Object Detection in Remote Sensing Images
[11] [11] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[12] [12] HE K M, GKIOXARI G, DOLLR P, et al. Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 2980-2988.
[13] [13] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 770-778.
[14] [14] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 936-944.
[15] [15] LIU Z. Swin Transformer: hierarchical vision Transformer using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 9992-10002.
[16] [16] PANG J M, CHEN K, SHI J P, et al. Libra R-CNN: towards balanced learning for object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 821-830.
[17] [17] ZHANG H K, CHANG H, MA B P, et al. Dynamic R-CNN: towards high quality object detection via dynamic training[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 260-275.
[18] [18] LONG L, GONG Y P, XIAO Z F, et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2486-2498.
[19] [19] XIAO Z F, LIU W, TANG G F, et al. Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images[J]. International Journal of Remote Sensing, 2015, 36(2): 618-644.
[20] [20] HOSANG J, BENENSON R, DOLLR P, et al. What makes for effective detection proposals?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(4): 814-830.
[21] [21] ZHANG S F, C CHI, YAO Y Q, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 9756-9765.
[22] [22] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 6154-6162.
[23] [23] ZHU X Z, SU W J, LU L W, et al. Deformable DETR: deformable Transformers for end-to-end object detection[EB/OL]. [2023-10-10]. https://arxiv.org/abs/2010.04159?context=cs.
[24] [24] TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 9626-9635.
[25] [25] KIM K, LEE H S. Probabilistic anchor assignment with IoU prediction for object detection[EB/OL]. [2023-10-10]. https://arxiv.org/pdf/2007.08103.
[26] [26] ZHANG H Y, WANG Y, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 8510-8519.
[27] [27] CHEN Q, WANG Y M, YANG T, et al. You only look one-level feature[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 13034-13043.
[28] [28] ZHENG G, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. [2023-10-10]. https://arxiv.org/pdf/2107.08430.
[29] [29] ZHANG H, LI F, LIU S L, et al. DINO: DETR with improved denoising anchor boxes for end-to-end object detection[EB/OL]. [2023-10-10]. https://arxiv.org/pdf/2203.03605.
[30] [30] CAI Z, LIU S T, WANG G D, et al.. Align-DETR: improving DETR with simple IoU-aware BCE loss[EB/OL]. [2023-10-10]. https://arxiv.org/abs/2304.07527?context=cs.
Get Citation
Copy Citation Text
MIAO Ru, LI Yi, ZHOU Ke, ZHANG Yanna, CHANG Ranran, MENG Geng. A Study on Improved Faster R-CNN Model for Multi-Object Detection in Remote Sensing Images[J]. Computer Engineering, 2025, 51(8): 292
Category:
Received: Nov. 16, 2023
Accepted: Aug. 26, 2025
Published Online: Aug. 26, 2025
The Author Email: ZHOU Ke (zhouke@henu.edu.cn)