Computer Engineering, Volume. 51, Issue 8, 292(2025)

A Study on Improved Faster R-CNN Model for Multi-Object Detection in Remote Sensing Images

MIAO Ru1,2, LI Yi1,2,3, ZHOU Ke1,2,3、*, ZHANG Yanna1, CHANG Ranran1,2,3, and MENG Geng1,2,3
Author Affiliations
  • 1College of Computer and Information Engineering, Henan University, Kaifeng 475004, Henan, China
  • 2Henan Province Engineering Research Center of Spatial Information Processing, Kaifeng 475004, Henan, China
  • 3Henan Provincial Spatio-Temporal Big Data Technology Innovation Center, Kaifeng 475004, Henan, China
  • show less
    References(20)

    [11] [11] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.

    [12] [12] HE K M, GKIOXARI G, DOLLR P, et al. Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 2980-2988.

    [13] [13] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 770-778.

    [14] [14] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 936-944.

    [15] [15] LIU Z. Swin Transformer: hierarchical vision Transformer using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 9992-10002.

    [16] [16] PANG J M, CHEN K, SHI J P, et al. Libra R-CNN: towards balanced learning for object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 821-830.

    [17] [17] ZHANG H K, CHANG H, MA B P, et al. Dynamic R-CNN: towards high quality object detection via dynamic training[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 260-275.

    [18] [18] LONG L, GONG Y P, XIAO Z F, et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2486-2498.

    [19] [19] XIAO Z F, LIU W, TANG G F, et al. Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images[J]. International Journal of Remote Sensing, 2015, 36(2): 618-644.

    [20] [20] HOSANG J, BENENSON R, DOLLR P, et al. What makes for effective detection proposals?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(4): 814-830.

    [21] [21] ZHANG S F, C CHI, YAO Y Q, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 9756-9765.

    [22] [22] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 6154-6162.

    [23] [23] ZHU X Z, SU W J, LU L W, et al. Deformable DETR: deformable Transformers for end-to-end object detection[EB/OL]. [2023-10-10]. https://arxiv.org/abs/2010.04159?context=cs.

    [24] [24] TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 9626-9635.

    [25] [25] KIM K, LEE H S. Probabilistic anchor assignment with IoU prediction for object detection[EB/OL]. [2023-10-10]. https://arxiv.org/pdf/2007.08103.

    [26] [26] ZHANG H Y, WANG Y, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 8510-8519.

    [27] [27] CHEN Q, WANG Y M, YANG T, et al. You only look one-level feature[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 13034-13043.

    [28] [28] ZHENG G, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. [2023-10-10]. https://arxiv.org/pdf/2107.08430.

    [29] [29] ZHANG H, LI F, LIU S L, et al. DINO: DETR with improved denoising anchor boxes for end-to-end object detection[EB/OL]. [2023-10-10]. https://arxiv.org/pdf/2203.03605.

    [30] [30] CAI Z, LIU S T, WANG G D, et al.. Align-DETR: improving DETR with simple IoU-aware BCE loss[EB/OL]. [2023-10-10]. https://arxiv.org/abs/2304.07527?context=cs.

    Tools

    Get Citation

    Copy Citation Text

    MIAO Ru, LI Yi, ZHOU Ke, ZHANG Yanna, CHANG Ranran, MENG Geng. A Study on Improved Faster R-CNN Model for Multi-Object Detection in Remote Sensing Images[J]. Computer Engineering, 2025, 51(8): 292

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 16, 2023

    Accepted: Aug. 26, 2025

    Published Online: Aug. 26, 2025

    The Author Email: ZHOU Ke (zhouke@henu.edu.cn)

    DOI:10.19678/j.issn.1000-3428.0068856

    Topics