Journal of Inorganic Materials, Volume. 39, Issue 5, 501(2024)
[1] KIM H J, KANG E S, KIM Y W et al. Effects of starting powder on microstructure and thermal conductivity of pressureless-sintered fully ceramic microencapsulated fuels[J]. Journal of the European Ceramic Society, 783(2023).
[2] KIM H M, KIM Y W, LIM K Y. Pressureless sintered silicon carbide matrix with a new quaternary additive for fully ceramic microencapsulated fuels[J]. Journal of the European Ceramic Society, 3971(2019).
[3] ZHAO K, FENG P, TAN J et al. A new route to fabricate high- performance binderless tungsten carbide: dynamic sinter forging[J]. Journal of the American Ceramic Society, 3343(2023).
[4] LIU D, FAN J, ZHAO K et al. Preparation of super-strong ZrO2 ceramics using dynamic hot forging[J]. Journal of the European Ceramic Society, 733(2023).
[5] FAN L, SONG X, ZHAO P et al. Super strong B4C ceramics prepared by dynamic sinter forging[J]. Journal of the European Ceramic Society, 4209(2023).
[6] FAN J, LIU D, ZHAO K et al. Densification kinetics and mechanism of zirconia ceramics
[7] HE H, ZHAO R, TIAN H et al. Sintering behavior of alumina whisker reinforced zirconia ceramics in hot oscillatory pressing[J]. Journal of Advanced Ceramics, 893(2022).
[8] LIU D, ZHANG X, FAN J et al. Sintering behavior and mechanical properties of alumina ceramics exposed to oscillatory pressure at different sintering stages[J]. Ceramics International, 23682(2021).
[9] HE H, SHAO G, ZHAO R et al. Oscillatory pressure-assisted sinter forging for preparation of high-performance SiC whisker reinforced Al2O3 composites[J]. Journal of Advanced Ceramics, 321(2023).
[10] ZHU T, XIE Z. Ultrastrong tough zirconia ceramics by defects- engineering[J]. Journal of the American Ceramic Society, 1617(2022).
[11] TERRANI K A, KIGGANS J O, KATOH Y et al. Fabrication and characterization of fully ceramic microencapsulated fuels[J]. Journal of Nuclear Materials, 268(2012).
[12] SNEAD L L, TERRANI K A, KATOH Y et al. Stability of SiC-matrix microencapsulated fuel constituents at relevant LWR conditions[J]. Journal of Nuclear Materials, 389(2014).
[13] CAO F, FAN X, LIU B et al. Microstructure and thermal conductivity of fully ceramic microencapsulated fuel fabricated by spark plasma sintering[J]. Journal of the American Ceramic Society, 4224(2018).
[14] COLOGNA M, TYRPEKL V, ERNSTBERGER M et al. Sub-micrometre grained UO2 pellets consolidated from sol gel beads using spark plasma sintering (SPS)[J]. Ceramics International, 6619(2016).
[15] LI J, FAN J, YUAN Y et al. Effect of oscillatory pressure on the sintering behavior of ZrO2 ceramic[J]. Ceramics International, 13240(2020).
[16] YUAN Y, FAN J, LI J et al. Oscillatory pressure sintering of Al2O3 ceramics[J]. Ceramics International, 15670(2020).
[17] FENG B, ZHOU Y, PENG C et al. Vibration assisted hot-press sintering of AlN ceramics[J]. Journal of the American Ceramic Society, 1711(2015).
[18] GUBERNAT A, STOBIERSKI L, LABAJ P. Microstructure and mechanical properties of silicon carbide pressureless sintered with oxide additives[J]. Journal of the European Ceramic Society, 781(2007).
[19] FAN J, YUAN Y, LI J et al. Densification and grain growth in oscillatory pressure sintering of alumina toughened zirconia ceramic composites[J]. Journal of Alloys and Compounds, 155644(2020).
[20] GAO Y, GAO K, FAN L et al. Oscillatory pressure sintering of WC-Fe-Ni cemented carbides[J]. Ceramics International, 12727(2020).
[22] XIE Z, LI S, AN L. A novel oscillatory pressure-assisted hot pressing for preparation of high performance ceramics[J]. Journal of the American Ceramic Society, 1012(2014).
[23] LI S, XIE Z, XUE W. Microstructure and mechanical properties of zirconia ceramics consolidated by a novel oscillatory pressure sintering[J]. Ceramics International, 10281(2015).
[24] GAO K, ZHAO J, SUN D et al. W-Ni-Fe refractory alloy sintered by hot oscillating pressure under different amplitudes[J]. Advanced Engineering Materials, 2201899(2023).
[25] PARK H S, RUDD R E, CAVALLO R M et al. Grain-size- independent plastic flow at ultrahigh pressures and strain rates[J]. Physical Review Letters, 065502(2015).
[26] LIU D, DU X, ZHAO K et al. Sintering behavior and mechanical properties of
[28] RAHAMAN M N[M]. Ceramics processing and sintering(2003).
[29] LIU D, WANG K, ZHAO K et al. Creep behavior of zirconia ceramics under a strong DC field[J]. Scripta Materialia, 114654(2022).
[30] BIND J M, BIGGERS J V. Hot-pressing of silicon carbide with 1% boron carbide addition[J]. Journal of the American Ceramic Society, 304(2010).
[31] RAY D A, KAUR S, CUTLER R A et al. Effect of additives on the activation energy for sintering of silicon carbide[J]. Journal of the American Ceramic Society, 1135(2010).
[32] YANG X, JIANG D L, TAN S H et al. Densification kinetics and mechanism of
[33] HASE T, SUZUKI H. Initial-stage sintering of
[34] JANA D C, SUNDARARAJAN G, CHATTOPADHYAY K. Effective activation energy for the solid-state sintering of silicon carbide ceramics[J]. Metallurgical and Materials Transactions A, 5599(2018).
[35] MALINGE A, COUPÉ A, PETITCORPS Y L et al. Pressureless sintering of beta silicon carbide nanoparticles[J]. Journal of the European Ceramic Society, 4393(2012).
Get Citation
Copy Citation Text
Zongbei HE, Fang CHEN, Dianguang LIU, Tongye LI, Qiang ZENG.
Category:
Received: Oct. 23, 2023
Accepted: --
Published Online: Jul. 8, 2024
The Author Email: Dianguang LIU (dianguang@swjtu.edu.cn)