Semiconductor Optoelectronics, Volume. 44, Issue 5, 666(2023)
Narrow-Linewidth Laser Based on On-Chip Microcavity Self-Feedback-Injection Locking
[1] [1] Zhang X Y, Cao Q T, Wang Z, et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface\[J\]. Nature Photonics, 2019, 13(1): 21-24.
[2] [2] Gu B B, Zhou Y Y, Yu X, et al. Fiber loop laser stabilized by fano resonance in metallic grating coupled resonator\[J\]. IEEE Photon. Technol. Lett., 2016, 28(14): 1597-1600.
[3] [3] Zhang X L, Zhao Y J. Research progress of microresonator-based optical frequency combs\[J\]. Acta Optica Sinica, 2021, 41(8): 0823014.
[4] [4] Spillane S M, Kippenberg T J, Vahala K J. Ultralow-threshold Raman laser using a spherical dielectric microcavity\[J\]. Nature, 2002, 415(6872): 621-623.
[5] [5] Lin G P, Diallo S, Saleh K, et al. Cascaded Brillouin lasing in monolithic Barium fluoride whispering gallery mode resonators\[J\]. Appl. Phys. Lett., 2014, 105(23): 231103.
[6] [6] Yan Y Z, Zou C L, Yan S B, et al. Packaged silica microsphere-taper coupling system for robust thermal sensing application\[J\]. Opt. Express, 2011, 19(7): 5753-5759.
[7] [7] Xiang C, Guo J, Jin W, et al. High-performance lasers for fully integrated silicon nitride photonics\[J\]. Nature Communications, 2021, 12: 6650.
[8] [8] Sayson N L B, Bi T, Ng V, et al. Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators\[J\]. Nature Photonics, 2019, 13: 701-706.
[9] [9] Liu X, Gong Z, Bruch A W, et al. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing\[J\]. Nature Communications, 2021, 12: 5428.
[10] [10] He Y, Lopez-Rios R, Javid U A, et al. High-speed tunable microwave-rate soliton microcomb\[J\]. Nature Communications, 2023, 14: 3467.
[11] [11] Nitiss E, Hu J, Stroganov A, et al. Optically reconfigurable quasi-phase-matching in silicon nitride microresonators\[J\]. Nature Photonics, 2022, 16: 134-141.
[12] [12] Herr T, Brasch V, Jost J D, et al. Temporal solitons in optical microresonators\[J\]. Nature Photonics, 2014, 8(2): 145-152.
[13] [13] Braginsky V B, Gorodetsky M L, Ilchenko V S. Quality-factor and nonlinear properties of optical whispering-gallery modes\[J\]. Phys. Lett. A, 1989, 137(7/8): 393-397.
[14] [14] McCall S L, Levi A F J, Slusher R E, et al. Whispering-gallery mode microdisk lasers\[J\]. Appl. Phys. Lett., 1992, 60(3): 289-291.
[15] [15] Moss D J, Morandotti R, Gaeta A L, et al. New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics\[J\]. Nature Photonics, 2013, 7(8): 597-607.
[16] [16] Yang Z, Jahanbozorgi M, Jeong D, et al. A squeezed quantum microcomb on a chip\[J\]. Nature Communications, 2021, 12: 4781.
[17] [17] Puckett M W, Liu K K, Chauhan N, et al. 422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth\[J\]. Nature Communications, 2021, 12: 934.
[18] [18] Drake T E, Stone J R, Briles T C, et al. Thermal decoherence and laser cooling of Kerr microresonator solitons\[J\]. Nature Photonics, 2020, 14: 480-485.
[19] [19] Kippenberg T J, Vahala K J. Cavity optomechanics: back-action at the mesoscale\[J\]. Science, 2008, 321(5893): 1172-1176.
[20] [20] Voloshin A S, Kondratiev N M, Lihachev G V, et al. Dynamics of soliton self-injection locking in optical microresonators\[J\]. Nature Communications, 2021, 12: 235.
[21] [21] Han X, Mao Q, Zhao L, et al. Novel resonant pressure sensor based on piezoresistive detection and symmetrical in-plane mode vibration\[J\]. Microsystems Nanoengineering, 2020, 6: 95.
[22] [22] Englebert N, De Lucia F, Parra-Rivas P, et al. Parametrically driven Kerr cavity solitons\[J\]. Nature Photonics, 2021, 15: 857-861.
[23] [23] Cygan A, Lisak D, Morzyński P, et al. Cavity mode-width spectroscopy with widely tunable ultra narrow laser\[J\]. Opt. Express, 2013, 21(24): 29744-29754.
[24] [24] Jiang Y Y, Ludlow A D, Lemke N D, et al. Making optical atomic clocks more stable with 10-16-level lasers tabilization\[J\]. Nature Photonics, 2011, 5(3): 158-161.
[25] [25] Al-Taiy H, Wenzel N, Preuβler S, et al. Ultra-narrow linewidth stable and tunable laser source for optical communication systems and spectroscopy\[J\]. Opt. Lett., 2014, 39(20): 5826-5829.
[26] [26] Adhikari R X. Gravitational radiation detection with laser interferometry\[J\]. Reviews of Modern Phys., 2014, 86(1): 121-151.
[27] [27] Zheng Y, Wu Z F, Shum P P, et al. Sensing and lasing applications of whispering gallery mode microresonators\[J\]. Opto-Electronic Advances, 2018, 1(9): 4-13.
[28] [28] Lin G P, Coillet A, Chembo Y K. Nonlinear photonics with high-Q whispering-gallery-mode resonators\[J\]. Adv. Opt. Photon., 2017, 9(4): 828-890.
[29] [29] Kondratiev N M, Lobanov V E, Cherenkov A V, et al. Self-injection locking of a laser diode to a high-Q WGM microresonator\[J\]. Opt. Express, 2017, 25(23): 28167-28178.
[30] [30] Galiev R R, Kondratiev N M, Lobanov V E, et al. Optimization of laser stabilization via self-injection locking to a whispering-gallery-mode microresonator\[J\]. Phys. Rev. Appl., 2020, 14(1): 014036.
[31] [31] Okoshi T, Kikuchi K, Nakayama A. Novel method for high resolution measurement of laser output spectrum\[J\]. Electron. Lett., 1980, 16(16): 630-631.
Get Citation
Copy Citation Text
BAI Qingsong. Narrow-Linewidth Laser Based on On-Chip Microcavity Self-Feedback-Injection Locking[J]. Semiconductor Optoelectronics, 2023, 44(5): 666
Category:
Received: Jul. 17, 2023
Accepted: --
Published Online: Nov. 20, 2023
The Author Email: BAI Qingsong (baiqingsong7@163.com)