Laser & Optoelectronics Progress, Volume. 60, Issue 10, 1010015(2023)

Adaptive Region Division Stereo Matching Algorithm

Han Li1,2,3 and Miaohua Huang1,2,3、*
Author Affiliations
  • 1Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, Hubei, China
  • 2Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, Hubei, China
  • 3Hubei Research Center for New Energy and Intelligent Connected Vehicle, Wuhan University of Technology, Wuhan 430070, Hubei, China
  • show less
    Figures & Tables(16)
    Flow chart of proposed algorithm
    Region division results. (a) Reference image; (b) range 0 division result; (c) range (0,15) division result; (d) range [15,+∞) division result
    Census transform result. (a) Pixel to be encoded; (b) pixel comparison result; (c) Census encoding result
    Census transform results. (A) Reference image; (b) real disparity map; (c) traditional Census transform result; (d) improved Census transform result
    Gradient point and cross arm of reference image. (a) Gradient point and cross arm of left reference image; (b) gradient point and cross arm of right reference image
    Gradient calculation results. (a) Reference image; (b) calculation result of improved gradient; (c) calculation result of ABiGrad; (d) calculation result of traditional gradient
    Cross area
    Cost images. (a) Reference image; (b) cost image when d=6; (c) cost image when d=32; (d) cost image when d=58
    Guided filter optimization results. (a) Reference image; (b) real disparity map; (c) before optimization of guide image filtering; (d) guide image filtering optimized
    Experiment results. (a) Reference images; (b) real disparity maps; (c) results of proposed algorithm; (d) mismatching maps
    • Table 1. Experimental parameter setting

      View table

      Table 1. Experimental parameter setting

      ParameterL1L2λCensusλgradientλADGTετSτH
      Value17343019100.01200.4
    • Table 2. Comparison of Census algorithms

      View table

      Table 2. Comparison of Census algorithms

      AlgorithmTeddyConeVenusTsukubaAverage
      Traditional Census12.1414.221.103.557.75
      Improved Census11.2214.240.982.967.35
      Improved rate0.92-0.020.120.590.40
    • Table 3. Comparison of gradient algorithms

      View table

      Table 3. Comparison of gradient algorithms

      AlgorithmTeddyConeVenusTsukubaAverage
      Traditional Grad14.8614.102.723.428.78
      ABiGrad11.4313.481.592.587.27
      Improved Grad11.8013.222.032.487.38
      Improved rate3.060.880.690.941.4
    • Table 4. Comparison of optimization algorithms

      View table

      Table 4. Comparison of optimization algorithms

      AlgorithmTeddyConeVenusTsukubaAverage
      Scanline optimization9.3712.120.702.216.1
      Guided filter optimization9.3511.910.612.065.99
      Improved rate0.020.190.080.150.11
    • Table 5. Mismatch rate of different algorithms on standard stereo picture pairs

      View table

      Table 5. Mismatch rate of different algorithms on standard stereo picture pairs

      AlgorithmTsukubaVenusTeddyConeAverage
      NonoccAllNonoccAllNonoccAllNonoccAll

      RTCensus

      Semi Glob

      SO+borders

      AdpDP

      VariableCross

      Adapt Weight

      Assw-Grad

      Len-ABiGrad

      Proposed algorithm

      5.089

      3.268

      1.291

      2.056

      1.995

      1.382

      1.573

      2.127

      1.664

      6.259

      3.967

      1.711

      4.228

      2.656

      1.852

      2.003

      2.505

      2.064

      1.587

      1.006

      0.251

      1.928

      0.623

      0.714

      0.895

      0.251

      0.262

      2.428

      1.577

      0.531

      2.989

      0.964

      1.196

      1.005

      0.623

      0.612

      7.968

      6.023

      7.024

      7.326

      9.759

      7.887

      7.205

      4.972

      4.471

      13.805

      12.203

      12.404

      14.406

      15.107

      18.308

      12.404

      11.002

      9.351

      4.106

      3.062

      3.684

      6.418

      6.287

      3.975

      3.684

      2.781

      3.353

      9.543

      9.755

      9.182

      13.709

      12.708

      9.704

      9.182

      8.681

      11.917

      6.348

      5.105

      4.513

      6.629

      6.267

      5.626

      4.744

      4.121

      4.212

    • Table 6. Running time of different algorithms on standard stereo picture pairs

      View table

      Table 6. Running time of different algorithms on standard stereo picture pairs

      MethodTeddyConeVenusTsukubaEnviroment
      Adapt Weight27.747.9104.2104.1Interl i5 4 GB
      Assw-Grad4.23.92.81.7Interl i5 8 GB
      Len-ABiGrad3.52.81.40.9Interl i5 8 GB
      Proposed method3.13.11.21.5Interl i7 8 GB
    Tools

    Get Citation

    Copy Citation Text

    Han Li, Miaohua Huang. Adaptive Region Division Stereo Matching Algorithm[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1010015

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Dec. 30, 2021

    Accepted: Mar. 2, 2022

    Published Online: May. 17, 2023

    The Author Email: Miaohua Huang (mh_huang@163.com)

    DOI:10.3788/LOP213401

    Topics