Acta Optica Sinica, Volume. 40, Issue 16, 1628002(2020)

Hyperspectral Image Classification Based on Three-Dimensional Dilated Convolutional Residual Neural Network

Mingjing Yan and Xiyou Su*
Author Affiliations
  • School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
  • show less
    Figures & Tables(13)
    Two-dimensional and three-dimensional convolution network diagrams. (a) 2D-CNN; (b) 3D-CNN
    Normal and dilated convolution kernel diagrams. (a) Normal kernel; (b) dilated kernel (r=2)
    Seven permutation and combination types of dilated and normal convolutional layers and two activation function distribution strategies. (a) Type 1; (b) type 2; (c) type 3; (d) type 4; (e) type 5; (f) type 6; (g) type 7; (h) distribution strategy Ⅰ; (i) distribution strategy Ⅱ
    Receptive field's distributions of different convolution combinations. (a) Dilation parameter distribution is (2,2,2); (b) dilation parameter distribution is (1,2,2); (c) dilation parameter distribution is (1,1,2)
    Network structure
    Corresponding precision of dilation rate in two datasets. (a) Indian Pines spectral dimension; (b) Salinas spectral dimension; (c) Indian Pines spatial dimension; (d) Salinas spatial dimension
    Pseudo-color composite images of two datasets. (a) Indian Pines; (b) Salinas
    Classification images of different network models in Indian Pines dataset. (a) True value image; (b) SVM; (c) 2D-CNN; (d) Res-3DCNN; (e) M3D-DCNN; (f) 3D-CNN; (g) Dilated-3D-CNN
    Classification images of different network models in Salinas dataset. (a) True value image; (b) SVM; (c) 2D-CNN; (d) Res-3DCNN; (e) M3D-DCNN; (f) 3D-CNN; (g) Dilated-3D-CNN
    • Table 1. [in Chinese]

      View table

      Table 1. [in Chinese]

      Structure typeIndian PinesSalinas
      KappaOAAAOA-meanKappaOAAAOA-mean
      Type 1-Ⅰ95.85296.97692.04196.94295.79796.98694.52496.823
      Type 2-Ⅰ95.67696.85191.49995.53496.79494.748
      Type 3-Ⅰ95.88597.00091.38395.38896.69094.694
      Type 4-Ⅰ95.15596.48090.50196.50595.86297.02895.02796.943
      Type 5-Ⅰ94.81196.23289.87295.80896.99194.772
      Type 6-Ⅰ95.60996.80191.55995.55496.81094.666
      Type 7-Ⅰ95.68096.85591.33596.85595.32096.64494.19296.644
    • Table 2. [in Chinese]

      View table

      Table 2. [in Chinese]

      Structure typeIndian PinesSalinas
      KappaOAAAOA-meanKappaOAAAOA-mean
      Type 1-Ⅱ95.97697.06691.91296.97395.80496.98994.79396.944
      Type 2-Ⅱ95.69896.86691.80095.88397.04594.903
      Type 3-Ⅱ95.86696.98791.95695.53296.79694.432
      Type 4-Ⅱ95.77596.92191.83996.68995.45596.74194.26296.856
      Type 5-Ⅱ94.79896.22090.17995.71896.92894.737
      Type 6-Ⅱ95.78396.92791.54395.67696.89894.682
      Type 7-Ⅱ95.61896.80891.35196.80895.45796.73994.56896.739
    • Table 3. [in Chinese]

      View table

      Table 3. [in Chinese]

      Class nameClassification accuracy
      SVM2D-CNNRes-3DCNNM3D-DCNN3D-CNNDilated-3D-CNN
      Background69.12398.79798.40699.24099.37699.653
      Alfalfa24.34852.17473.58769.13082.06582.065
      Corn-notill61.58385.00784.35288.23593.09294.492
      Corn-mintill40.12680.62486.64089.32992.94894.555
      Corn29.47377.42684.32588.27093.41892.806
      Grass-pasture73.11383.01383.04686.11590.97191.766
      Grass-trees75.99389.37089.41192.49394.94596.075
      Grass-pasture-mowed23.75058.03670.89370.71478.75081.786
      Hay-windrowed85.47197.40697.41697.69998.18098.441
      Oats22.75049.25047.00072.00075.25087.000
      Soybean-notill55.71084.76784.26888.97193.89795.307
      Soybean-mintill71.53691.44089.66893.73396.44997.132
      Soybean-clean40.78072.68675.94186.16989.77192.119
      Wheat84.29393.31794.75695.68396.58597.390
      Woods55.48686.64486.06792.51895.63695.945
      Buildings-Grass-Trees-Drives28.45558.50363.96577.53287.94690.303
      Stone-Steel-Towers33.44177.79681.66786.23790.86089.570
      Kappa54.79188.31788.51492.54195.37796.304
      OA64.63691.72191.82094.62296.63497.303
      AA51.49678.60381.84886.71091.18592.730
    • Table 4. [in Chinese]

      View table

      Table 4. [in Chinese]

      Class nameClassification accuracy
      SVM2D-CNNRes-3DCNNM3D-DCNN3D-CNNDilated-3D-CNN
      Background70.50298.29598.36598.49198.67298.806
      Brocoli-green-weeds-194.55695.76891.59486.57395.88896.374
      Brocoli-green-weeds-295.45698.33297.77298.55298.35598.395
      Fallow44.09886.18073.33686.28289.65390.567
      Fallow-rough-plow60.74082.12380.28986.59688.23890.585
      Fallow-smooth47.04387.95787.58089.40291.42391.356
      Stubble98.96496.41995.92687.17696.58396.638
      Celery91.56296.46296.15997.39997.12297.837
      Grapes-untrained83.63692.16592.61893.30095.89696.643
      Soil-vinyard-develop64.36293.48292.08593.86595.14296.079
      Corn-senesced-green-weeds79.29792.46690.87692.52795.59795.165
      Lettuce-romaine-4wk71.19694.18093.15394.09495.78195.058
      Lettuce-romaine-5wk31.65195.91690.49794.71497.73898.093
      Lettuce-romaine-6wk22.85886.09671.33190.29191.74592.651
      Lettuce-romaine-7wk52.25586.67083.94488.42689.78990.792
      Vinyard-untrained38.98785.98283.51987.33093.21895.129
      Vinyard-vertical-trellis97.66295.99096.00696.23196.06896.388
      Kappa61.95193.26792.01393.22695.56796.149
      OA70.69795.18594.32495.17896.82097.236
      AA67.34392.02889.12191.83894.52495.091
    Tools

    Get Citation

    Copy Citation Text

    Mingjing Yan, Xiyou Su. Hyperspectral Image Classification Based on Three-Dimensional Dilated Convolutional Residual Neural Network[J]. Acta Optica Sinica, 2020, 40(16): 1628002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Mar. 6, 2020

    Accepted: May. 15, 2020

    Published Online: Aug. 7, 2020

    The Author Email: Su Xiyou (suxiyou@126.com)

    DOI:10.3788/AOS202040.1628002

    Topics