Acta Optica Sinica, Volume. 40, Issue 16, 1628002(2020)
Hyperspectral Image Classification Based on Three-Dimensional Dilated Convolutional Residual Neural Network
Fig. 1. Two-dimensional and three-dimensional convolution network diagrams. (a) 2D-CNN; (b) 3D-CNN
Fig. 2. Normal and dilated convolution kernel diagrams. (a) Normal kernel; (b) dilated kernel (r=2)
Fig. 3. Seven permutation and combination types of dilated and normal convolutional layers and two activation function distribution strategies. (a) Type 1; (b) type 2; (c) type 3; (d) type 4; (e) type 5; (f) type 6; (g) type 7; (h) distribution strategy Ⅰ; (i) distribution strategy Ⅱ
Fig. 4. Receptive field's distributions of different convolution combinations. (a) Dilation parameter distribution is (2,2,2); (b) dilation parameter distribution is (1,2,2); (c) dilation parameter distribution is (1,1,2)
Fig. 6. Corresponding precision of dilation rate in two datasets. (a) Indian Pines spectral dimension; (b) Salinas spectral dimension; (c) Indian Pines spatial dimension; (d) Salinas spatial dimension
Fig. 7. Pseudo-color composite images of two datasets. (a) Indian Pines; (b) Salinas
Fig. 8. Classification images of different network models in Indian Pines dataset. (a) True value image; (b) SVM; (c) 2D-CNN; (d) Res-3DCNN; (e) M3D-DCNN; (f) 3D-CNN; (g) Dilated-3D-CNN
Fig. 9. Classification images of different network models in Salinas dataset. (a) True value image; (b) SVM; (c) 2D-CNN; (d) Res-3DCNN; (e) M3D-DCNN; (f) 3D-CNN; (g) Dilated-3D-CNN
|
|
|
|
Get Citation
Copy Citation Text
Mingjing Yan, Xiyou Su. Hyperspectral Image Classification Based on Three-Dimensional Dilated Convolutional Residual Neural Network[J]. Acta Optica Sinica, 2020, 40(16): 1628002
Category: Remote Sensing and Sensors
Received: Mar. 6, 2020
Accepted: May. 15, 2020
Published Online: Aug. 7, 2020
The Author Email: Su Xiyou (suxiyou@126.com)