Laser & Optoelectronics Progress, Volume. 60, Issue 11, 1106013(2023)

Review of Visual Navigation Technology Based on Craters

Liheng Xu1,2、†, Jie Jiang1,2、†,*, and Yan Ma1,2
Author Affiliations
  • 1School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
  • 2Key Laboratory of Precision Opto-Mechatronics Technology, Ministry of Education, Beihang University, Beijing 100191, China
  • show less
    Figures & Tables(18)
    Crater types[30]. (a) Bowls crater; (b) filled crater; (c) multi-ring crater
    Examples of DEM, infrared, and visible light images of craters[32]. Craters pictured in (a) come from Mercury/Messenger[33]; (b) infrared data from Mars/Themis; (c) visible light data from Moon/Wide Angle Camera Global[34]
    Schematic diagram of crater-based visual navigation method[43]
    Test results of segmentation network on images of craters. (a) Head structure of Mask R-CNN[62]; (b) numbers shown near craters are detection certainty[61]
    Test results of detection network with images of craters[41]
    Basic flow chart of tracking recognition
    Crater image matching[40]. (a) Direct matching with different perturbing; (b) triangle matching
    Diagram of pyramid algorithm which continuously increases fourth crater l to form a pyramid structure and reduces redundant matches[79]
    Flow chart of matching system including direct matching, triangle matching, and LIS matching[40]
    World coordinate Oxyzw, machine coordinate Oxyzm, camera coordinate Oxyzc, and image coordinate Oxyzimage. Pose includes rotation matrix R and translation matrix t[79]
    Block diagram of ATON system[117]
    • Table 1. Summary of TRN methods

      View table

      Table 1. Summary of TRN methods

      NumberType of collected imagesFeature/Other measurementObject to matchOutput parameterPassive imagingActive imagingPattern recognitionCorrelaction
      1Visible imagesCraters14Craters in databaseAbsolute position and attitude
      2Visible imagesScale-invariant feature transformation(SIFT)featuresCelestial surface mapAbsolute position and attitude
      3Visible imagesSurface features29/Estimated attitudesOn-orbit map of landing siteAbsolute position and updating attitude
      4Visible imagesEstimated attitudesOn-orbit map of landing siteHorizontal speed
      5Visible imagesEstimated attitudesDescending sequence imagesHorizontal speed
      6Visible imagesHeightDescending sequence imagesAverage velocity and angular acceleration
      7Digital elevation model(DEM)dataSignatures/Motion correction dataDEM data of landing areaAbsolute position and attitude
      8DEM dataMotion correction data/Estimated attitudesGlobal DEM dataAbsolute position
    • Table 2. Crater datasets

      View table

      Table 2. Crater datasets

      Name of datasetData sourceQuantity and sizeTypePlanetaryOpen data
      Andersson et al15(1982)MoonTable
      Rodionova et al(2000)19308 craters(>10 km)MarsTable
      Salamunic’car et al21(2008)Some previous work57633 cratersTHEMISMarsNon-open
      Head et al16(2010)LOLA5185 craters(≥20 km)DTMMoonTable
      Salamunic’car et al22-23(2012)MDIM,THEMIS-DIR,and MGS MOC datasets132843 cratersOptical imagesMarsTable
      Bandeira et al24(2012)HRSC3050 cratersOptical imagesMarsImages/Table
      Robbins et al25-26(2012)THEMIS Daytime IR mosaics384343 craters(≥1 km)THEMISMarsNon-open
      Salamunic’car et al27(2013)9224 cratersDEM and optical imagesPhobosTable
      Neumann et al17-18(2015)GRAIL and LOLA74 basins(>200 km)Gravitational dataMoonNon-open
      Povilaitis et al19(2018)LROC WAC22746 craters(5-20 km)Monochrome mosaic and DTMMoonImages
      Robbins et al20(2018)LRO WAC and Kaguya Terrain Camera2000000+ craters(1-2 km)CTX mosaicsMoonNon-open
    • Table 3. Domestic and foreign research institutions/personnel

      View table

      Table 3. Domestic and foreign research institutions/personnel

      Research institutions /personnelCrater detection methodCrater recognition methodPose calculation methodNavigation accuracy
      NASA JPL/Yang Cheng36(2003)Edge detection,rim edge grouping,ellipse fitting,precision fitting,and crater confidence evaluationCorrelation matching,context matching,and conic invariance matchingOrbit determination filterPosition error is <100 m
      Chad Hanak37(2010)Hough transform and ellipse detectionUsing triangle affine invariants by voting matchingMatching rate is 82%(evaluation of crater recognition)
      Harbin Institute of Technology/Hutao Cui38(2014)MSER feature extraction,image region pairing method,and ellipse fittingUsing area ratio as invariants to matchPosition error is <0.97 pixel
      Guilherme F. Trigo39(2018)Extract neighboring illuminated and shadowed sections,centroids trace,and fit ellipseEPnP algorithm in conjunction with QCP solverPosition error is <15 m,velocity error is <0.8 m·s-1,and attitude error is < 5°
      Yang Tian12(2018)Image region pairing method and ellipse fittingA distributed extended Kalman filterPosition error is <200 m and attitude error is < 1°
      DLR,German Aerospace Center40(2020)Image segmentation and fitting ellipse cratersDirect,triangle,and LIS matchingEPNP and Kalman filter

      Position error is <500 m,

      velocity error is <40 m·s-1,and

      angular velocity is <0.001 rad·s-1

      Beihang University41(2021)Dense point crater detection networkUsing encoded featuresEPNP and Kalman filterPosition error is <10 m and attitude error is <1.5°
      Delft University of Technology42(2022)Ellipse R-CNNUsing coplanar invariants for ellipse triadsExtended Kalman filterPosition error is >160 m
    • Table 4. Evaluation indicators in crater detection

      View table

      Table 4. Evaluation indicators in crater detection

      Evaluation indicatorMeaning
      STPTrue positive(STP)means that some positive samples are predicted to be positive
      SFPFalse positive(SFP)means that some negative samples are predicted to be positive
      SFNFalse negative(SFN)means that some positive samples are predicted to be negative
      STNTrue negative(STN)means that some negative samples are predicted to be negative
      TDTTotal detection time(TDT
      R=STP/(STP+SFNRecall(also known as sensitivity)is number of true positive results divided by number of all samples that should have been identified as positive
      P=STP/(STP+SFPPrecision(also called positive predictive value)is number of true positive results divided by number of all positive results,including those not identified correctly
      FDR=SFP/(STP+SFPFraction of false instances among all detected positive instances. It evaluates fraction of false samples
      B=SFP/STPBranching factor,which is ratio of number of false instances to number of positive instances. It evaluates classification performance
      Q=STP/(STP+SFP+SFNQuality factor which evaluates overall performance of algorithm
      F1=2×P×RP+RF-score or F-measure is a measure of a test’s accuracy. It is calculated from precision and recall of test
      ROC curveHorizontal axis is ‘false positive rate’ and vertical axis is ‘true positive rate’
      AUCArea under curve(AUC)is defined as area under ROC curve surrounded by a coordinate axis
    • Table 5. Evaluation indicators in crater recognition

      View table

      Table 5. Evaluation indicators in crater recognition

      Evaluation indicatorMeaning
      MTNTotal matching number
      MCNCorrect matching number
      MFNFalse matching number
      MCN/(MCN+MFNMatching rate
      MFN/(MCN+MFNFalse matching rate
    • Table 6. Comparison of crater identification methods

      View table

      Table 6. Comparison of crater identification methods

      ResearcherFeatureMatching methodApplication scenarioMatching rate
      Hanak3776(2010)Affine invariants of crater tuplesVote matchingLIS identification of orbital segment82%
      He14(2010)Affine invariants of curve pairVote matchingTracking identification of landing segment>85%
      Park77(2019)30 projective invariants of cratersVote matchingLIS identification of landing segment41.7%
      Alfredo28(2021)Projective invariants of cratersTemplate matchingTracking identification of orbital segmentPosition error is <400 m
      Chen41(2021)Characteristic patterns of crater combinationsWeighted bipartite graph best matching methodTracking identification of landing segment98.5%
      Doppenberg42(2021)Seven projective invariants of cratersDirect matchingLIS identification of orbital segment14%
      Christian78(2021)Seven projective invariants of cratersHierarchical matchingLIS identification of orbital segment>80%
      Xu79(2022)Tow projective invariants of crater pairIterative pyramid matchingLIS identification of landing segment>80%
    • Table 7. Evaluation indicators in pose calculation

      View table

      Table 7. Evaluation indicators in pose calculation

      Evaluation indicatorMeaning
      XPosition error in X axis
      YPosition error in Y axis
      ZPosition error in Z axis
      Yaw angleYaw rotation around yaw axis
      Roll angleRoll rotation around roll axis
      Pitch anglePitch rotation around pitch axis
      VelocityVelocity of detector
      Angular velocityAngular velocity of detector
      HeightHeight of detector
      EA,allAbsolute trajectory error
      EA,transAverage translational error
      ER,allRelative pose error
      ER,transRelative translational error
    Tools

    Get Citation

    Copy Citation Text

    Liheng Xu, Jie Jiang, Yan Ma. Review of Visual Navigation Technology Based on Craters[J]. Laser & Optoelectronics Progress, 2023, 60(11): 1106013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Dec. 27, 2022

    Accepted: Feb. 6, 2023

    Published Online: Jun. 7, 2023

    The Author Email: Jie Jiang (jiangjie@buaa.edu.cn)

    DOI:10.3788/LOP223406

    Topics