Laser & Optoelectronics Progress, Volume. 58, Issue 14, 1410023(2021)

Real-Time Indoor Layout Estimation Method Based on Multi-Task Supervised Learning

Rongze Huang, Qinghao Meng, and Yinbo Liu*
Author Affiliations
  • School of Electrical and Information Engineering, Institute of Robotics and Autonomous Systems, Tianjin Key Laboratory of Process Detection and Control, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(8)
    General structure of multi-task supervised lightweight convolutional neural network
    Structures of various convolution modules. (a) Non-bottleneck-1D; (b) LFBlock; (c) DSBlock; (d) USBlock
    Examples of labels. (a) Original images; (b) edge annotation heat maps; (c) visualization result of semantic segmentation labels
    Visualization results of the proposed network model. (a) Original images; (b) semantic segmentation ground truth maps; (c) semantic segmentation prediction maps of the proposed method; (d) comparison maps between the estimated layouts of the proposed method and the real layouts (green is the estimated layout, red is the real layout)
    • Table 1. Parameters of the encoder

      View table

      Table 1. Parameters of the encoder

      Layer IDBlock typeDilationDropoutOutput channelsOutput resolution
      1DSBlock----16128×128
      2DSBlock----6464×64
      3-7LFBlock10.36464×64
      8DSBlock----12832×32
      9LFBlock20.312832×32
      10LFBlock40.312832×32
      11LFBlock80.312832×32
      12LFBlock160.312832×32
      13LFBlock20.312832×32
      14LFBlock40.312832×32
      15LFBlock80.312832×32
      16LFBlock160.312832×32
    • Table 2. Parameters of the decoder

      View table

      Table 2. Parameters of the decoder

      Layer IDBlock typeDilationDropoutOutput channelsOutput resolution
      1USBlock----6464×64
      2-3LFBlock10.36464×64
      4USBlock----16128×128
      5-6LFBlock10.316128×128
      7Deconvolution----1/15256×256
    • Table 3. Model performance evaluation

      View table

      Table 3. Model performance evaluation

      Addmulti-task supervised?Use LFBLock?MPA /%MIOU /%FWIOU /%CE /%PE /%Size /MBTime /ms
      NoYes77.4466.4271.977.049.866.243.26
      NoNo77.7666.6572.016.929.698.848.02
      YesNo81.0368.0473.856.559.478.847.92
      YesYes81.9668.9174.026.269.056.243.13
    • Table 4. Performance comparison of different methods on LSUN dataset

      View table

      Table 4. Performance comparison of different methods on LSUN dataset

      MethodCE /%PE/%
      Ref. [4]15.4824.23
      Ref. [6]11.0216.71
      Ref. [22]10.1314.82
      Ref. [23]8.7012.49
      Ref. [10]8.2010.63
      Ref. [24]7.959.31
      Ref. [9]6.309.86
      Proposed6.269.05
    Tools

    Get Citation

    Copy Citation Text

    Rongze Huang, Qinghao Meng, Yinbo Liu. Real-Time Indoor Layout Estimation Method Based on Multi-Task Supervised Learning[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1410023

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Aug. 28, 2020

    Accepted: Sep. 30, 2020

    Published Online: Jun. 30, 2021

    The Author Email: Yinbo Liu (liuyinbo@tju.edu.cn)

    DOI:10.3788/LOP202158.1410023

    Topics