Optics and Precision Engineering, Volume. 31, Issue 20, 3050(2023)

CT and PET medical image fusion based on LL-GG-LG Net

Tao ZHOU1,2, Xiangxiang ZHANG1,2、*, Huiling LU3, Qi LI1,2, and Qianru CHENG1,2
Author Affiliations
  • 1School of computer science and engineering, North Minzu University, Yinchuan75002, China
  • 2Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan75001, China
  • 3School of Medical information engineering, Ningxia Medical University, Yinchuan750004, China
  • show less
    References(26)

    [1] [1] 周涛, 霍兵强, 陆惠玲, 等. 融合多尺度图像的密集神经网络肺部肿瘤识别算法[J]. 光学 精密工程, 2021, 29(7): 1695-1708. doi: 10.37188/OPE.20212907.1695ZHOUT, HUOB Q, LUH L, et al. Lung tumor image recognition algorithm with densenet fusion multi-scale images[J]. Opt. Precision Eng., 2021, 29(7): 1695-1708.(in Chinese). doi: 10.37188/OPE.20212907.1695

    [2] AZAM MA, KHAN KB, SALAHUDDIN S et al. A review on multimodal medical image fusion: compendious analysis of medical modalities, multimodal databases, fusion techniques and quality metrics[J]. Computers in Biology and Medicine, 144, 105253(2022).

    [3] LI Y, ZHAO J, LV Z et al. Medical image fusion method by deep learning[J]. International Journal of Cognitive Computing in Engineering, 2, 21-29(2021).

    [4] POLINATI S, DHULI R. Multimodal medical image fusion using empirical wavelet decomposition and local energy maxima[J]. Optik, 205, 163947(2020).

    [5] HILL P, AL-MUALLA M E, BULL D. Perceptual image fusion using wavelets[J]. IEEE Transactions on Image Processing, 26, 1076-1088(2016).

    [6] LI S T, YIN H T, FANG L Y. Group-sparse representation with dictionary learning for medical image denoising and fusion[J]. IEEE Transactions on Biomedical Engineering, 59, 3450-3459(2012).

    [7] LIU Y, LIU S, WANG Z. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 24, 147-164(2015).

    [8] SUN J, ZHU H, XU Z et al. Poisson image fusion based on Markov random field fusion model[J]. Information Fusion, 14, 241-254(2013).

    [10] LI X X, GUO X P, HAN P F et al. Laplacian redecomposition for multimodal medical image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 69, 6880-6890(2020).

    [11] LIU Y, CHEN X, CHENG J et al. A medical image fusion method based on convolutional neural networks[C], 1-7(10).

    [12] TANG W, LIU Y, CHENG J et al. Green fluorescent protein and phase contrast image fusion via detail preserving cross network[J]. IEEE Transactions on Computational Imaging, 7, 584-597(2021).

    [13] LI H, WU X J. DenseFuse: a fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 28, 2614-2623(2019).

    [15] JUNG H, KIM Y, JANG H et al. Unsupervised deep image fusion with structure tensor representations[J]. IEEE Transactions on Image Processing, 29, 3845-3858(2020).

    [16] XU H, MA J. EMFusion: an unsupervised enhanced medical image fusion network[J]. Information Fusion, 76, 177-186(2021).

    [17] ZHOU T, LI Q, LU H et al. GAN review: models and medical image fusion applications[J]. Information Fusion, 91, 134-148(2023).

    [18] GUO X P, NIE R C, CAO J D et al. FuseGAN: learning to fuse multi-focus image via conditional generative adversarial network[J]. IEEE Transactions on Multimedia, 21, 1982-1996(2019).

    [19] MA J Y, XU H, JIANG J J et al. DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion[J]. IEEE Transactions on Image Processing, 29, 4980-4995(2020).

    [20] ZHANG H, YUAN J T, TIAN X et al. GAN-FM: infrared and visible image fusion using GAN with full-scale skip connection and dual Markovian discriminators[J]. IEEE Transactions on Computational Imaging, 7, 1134-1147(2021).

    [21] FANG P F, ZHOU J M, ROY S K et al. Attention in attention networks for person retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 4626-4641(2022).

    [22] ZHANG Z, LIN Z, XU J et al. Bilateral attention network for RGB-D salient object detection[J]. IEEE Transactions on Image Processing, 30, 1949-1961(2021).

    [23] VASWANI A, SHAZEER N, NIKI P et al. Attention is all you need[J]. Advances in neural information processing systems, 30(2017).

    [24] ZHOU T, YE X Y, LU H L et al. Dense convolutional network and its application in medical image analysis[J]. BioMed Research International, 2022, 1-22(2022).

    Tools

    Get Citation

    Copy Citation Text

    Tao ZHOU, Xiangxiang ZHANG, Huiling LU, Qi LI, Qianru CHENG. CT and PET medical image fusion based on LL-GG-LG Net[J]. Optics and Precision Engineering, 2023, 31(20): 3050

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Mar. 31, 2023

    Accepted: --

    Published Online: Nov. 28, 2023

    The Author Email: Xiangxiang ZHANG (zxx19990503@163.com)

    DOI:10.37188/OPE.20233120.3050

    Topics