Journal of the Chinese Ceramic Society, Volume. 53, Issue 6, 1577(2025)
Development and Research Process of Ultra-Thin Sulfide Solid-State Electrolyte Film
[1] [1] DEISS E, WOKAUN A, BARRAS J L, et al. Average voltage, energy density, and specific energy of lithium-ion batteries: Calculation based on first principles[J]. J Electrochem Soc, 144(11): 3877–3881.
[2] [2] DENG K R, ZENG Q G, WANG D, et al. Nonflammable organic electrolytes for high-safety lithium-ion batteries[J]. Energy Storage Mater, 2020, 32: 425–447.
[3] [3] DENG K R, QIN J X, WANG S J, et al. Effective suppression of lithium dendrite growth using a flexible single-ion conducting polymer electrolyte[J]. Small, 2018: e1801420.
[4] [4] KHARTON V V, MARQUES F M B, ATKINSON A. Transport properties of solid oxide electrolyte ceramics: A brief review[J]. Solid State Ion, 2004, 174(1/4): 135–149.
[5] [5] HE B J, ZHANG F, XIN Y, et al. Halogen chemistry of solid electrolytes in all-solid-state batteries[J]. Nat Rev Chem, 2023, 7(12): 826–842.
[6] [6] LAU J, DEBLOCK R H, BUTTS D M, et al. Sulfide solid electrolytes for lithium battery applications[J]. Adv Energy Mater, 2018, 8(27): 1800933.
[7] [7] STETTNER T, WALTER F C, BALDUCCI P A. Imidazolium-based protic ionic liquids as electrolytes for lithium-ion batteries[J]. Batter Supercaps, 2019, 2(1): 55–59.
[8] [8] AIHARA Y, ITO S, OMODA R, et al. The electrochemical characteristics and applicability of an amorphous sulfide-based solid ion conductor for the next-generation solid-state lithium secondary batteries[J]. Front Energy Res, 2016, 4: 18.
[9] [9] SOUQUET J L, ROBINEL E, BARRAU B, et al. Glass formation and ionic conduction in the M2S–GeS2 (M = Li, Na, Ag) systems[J]. Solid State Ion, 1981, 3: 317–321.
[10] [10] MURAYAMA M, KANNO R, IRIE M, et al. Synthesis of new lithium ionic conductor thio-LISICON: Lithium silicon sulfides system[J]. J Solid State Chem, 2002, 168(1): 140–148.
[11] [11] ZHOU J B, CHEN P, WANG W, et al. Li7P3S11 electrolyte for all-solid-state lithium-ion batteries: Structure, synthesis, and applications[J]. Chem Eng J, 2022, 446: 137041.
[12] [12] XU C, CHEN L Q, WU F. Unveiling the power of sulfide solid electrolytes for next-generation all-solid-state lithium batteries[J]. Next Mater, 2025, 6: 100428.
[13] [13] RIBES M, BARRAU B, SOUQUET J L. Sulfide glasses: Glass forming region, structure and ionic conduction of glasses in Na2S–XS2 (X–Si; Ge), Na2S–P2S5 and Li2S–GeS2 systems[J]. J Non Cryst Solids, 1980, 38: 271–276.
[14] [14] WEPPNER W. Engineering of solid state ionic devices[J]. Ionics, 2003, 9(5): 444–464.
[15] [15] JOHNSON R T, BIEFELD R M, KNOTEK M L, et al. Ionic conductivity in solid electrolytes based on lithium aluminosilicate glass and glass–eramic[J]. J Electrochem Soc, 123(5): 680–687.
[16] [16] SHAO Y J, ZHONG G M, LU Y X, et al. A novel NASICON-based glass–ceramic composite electrolyte with enhanced Na-ion conductivity[J]. Energy Storage Mater, 2019, 23: 514–521.
[17] [17] KANNO R, MURAYAMA M. ChemInform abstract: Lithium ionic conductor thio-LISICON. The Li2S–GeS2–P2S5 system[J]. ChemInform, 2001, 32(42): no.
[18] [18] KOBAYASHI T, IMADE Y, SHISHIHARA D, et al. All solid-state battery with sulfur electrode and thio-LISICON electrolyte[J]. J Power Sources, 2008, 182(2): 621–625.
[19] [19] KATO Y, HORI S, KANNO R. Li10GeP2S12-type superionic conductors: Synthesis, structure, and ionic transportation[J]. Adv Energy Mater, 2020, 10(42): 2002153.
[20] [20] KATO Y, SAITO R, SAKANO M, et al. Synthesis, structure and lithium ionic conductivity of solid solutions of Li10(Ge1−x Mx)P2S12 (M = Si, Sn)[J]. J Power Sources, 2014, 271: 60–64.
[21] [21] KUHN A, GERBIG O, ZHU C B, et al. A new ultrafast superionic Li-conductor: Ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes[J]. Phys Chem Chem Phys, 2014, 16(28): 14669–14674.
[22] [22] KIM K H, MARTIN S W. Structures and properties of oxygen-substituted Li10SiP2S12–xOx solid-state electrolytes[J]. Chem Mater, 2019, 31(11): 3984–3991.
[23] [23] RAYAVARAPU P R, SHARMA N, PETERSON V K, et al. Variation in structure and Li+-ion migration in argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes[J]. J Solid State Electrochem, 2012, 16(5): 1807–1813.
[24] [24] RAO R P, ADAMS S. Studies of lithium argyrodite solid electrolytes for all-solid-state batteries[J]. Phys Status Solidi A, 2011, 208(8): 1804–1807.
[25] [25] VAN LANGEVELDE P H, KATSOUNAROS I, KOPER M T M. Electrocatalytic nitrate reduction for sustainable ammonia production[J]. Joule, 2021, 5(2): 290–294.
[26] [26] ADELI P, BAZAK J D, PARK K H, et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution[J]. Angew Chem Int Ed, 2019, 58(26): 8681–8686.
[27] [27] KRAFT M A, OHNO S, ZINKEVICH T, et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1–xGexS5I for all-solid-state batteries[J]. J Am Chem Soc, 2018, 140(47): 16330–16339.
[28] [28] ZHOU L D, ASSOUD A, ZHANG Q, et al. New family of argyrodite thioantimonate lithium superionic conductors[J]. J Am Chem Soc, 2019, 141(48): 19002–19013.
[29] [29] LIU H, LIANG Y H, WANG C, et al. Priority and prospect of sulfide-based solid-electrolyte membrane[J]. Adv Mater, 2023, 35(50): e2206013.
[30] [30] ZHU Y Z, HE X F, MO Y F. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li–ion batteries[J]. J Mater Chem A, 2016, 4(9): 3253–3266.
[31] [31] HIRAI K, TATSUMISAGO M, MINAMI T. Thermal and electrical properties of rapidly quenched glasses in the systems Li2S–SiS2– LixMOy (LixMOy = Li4 SiO4, Li2SO4)[J]. Solid State Ion, 1995, 78(3/4): 269–273.
[32] [32] MIZUNO F, HAYASHI A, TADANAGA K, et al. High lithium ion conducting glass–ceramics in the system Li2S–P2S5[J]. Solid State Ion, 2006, 177(26/32): 2721–2725.
[33] [33] XU R C, XIA X H, YAO Z J, et al. Preparation of Li7P3S11 glass–ceramic electrolyte by dissolution-evaporation method for all-solid-state lithium ion batteries[J]. Electrochim Acta, 2016, 219: 235–240.
[34] [34] KANNO R, MURAYAMA M. Lithium ionic conductor thio-LISICON: The Li2S–GeS2–P2S5 system[J]. J Electrochem Soc, 2001, 148(7): A742.
[35] [35] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nat Mater, 2011, 10(9): 682–686.
[36] [36] HORI S, SUZUKI K, HIRAYAMA M, et al. Synthesis, structure, and ionic conductivity of solid solution, Li10+M1+P2−S12 (M = Si, Sn)[J]. Faraday Discuss, 2014, 176(0): 83–94.
[37] [37] LIANG J W, CHEN N, LI X N, et al. Li10Ge(P1–xSbx)2S12 lithium-ion conductors with enhanced atmospheric stability[J]. Chem Mater, 2020, 32(6): 2664–2672.
[38] [38] YU C, GANAPATHY S, HAGEMAN J, et al. Facile synthesis toward the optimal structure-conductivity characteristics of the argyrodite Li6PS5Cl solid-state electrolyte[J]. ACS Appl Mater Interfaces, 2018, 10(39): 33296–33306.
[39] [39] FENG X Y, CHIEN P H, WANG Y, et al. Enhanced ion conduction by enforcing structural disorder in Li-deficient argyrodites Li6−xPS5−xCl1+x[J]. Energy Storage Mater, 2020, 30: 67–73.
[40] [40] PATEL S V, BANERJEE S, LIU H Y, et al. Tunable lithium-ion transport in mixed-halide argyrodites Li6–xPS5–xClBrx: An unusual compositional space[J]. Chem Mater, 2021, 33(4): 1435–1443.
[41] [41] KUDU U, FAMPRIKIS T, FLEUTOT B, et al. A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S−P2S5 binary system[J]. J Power Sources, 2018, 407: 31–43.
[42] [42] PARK K H, BAI Q, KIM D H, et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries[J]. Adv Energy Mater, 2018, 8(18): 1800035.
[43] [43] SCHLEM R, BURMEISTER C F, MICHALOWSKI P, et al. Energy storage materials for solid-state batteries: Design by mechanochemistry[J]. Adv Energy Mater, 2021, 11(30): 2101022.
[44] [44] HOFER M, GRUBE M, BURMEISTER C F, et al. Effective mechanochemical synthesis of sulfide solid electrolyte Li3PS4 in a high energy ball mill by process investigation[J]. Adv Powder Technol, 2023, 34(6): 104004.
[45] [45] MIURA A, ROSERO–NAVARRO N C, SAKUDA A, et al. Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery[J]. Nat Rev Chem, 2019, 3: 189–198.
[46] [46] PHUC N H H, TOTANI M, MORIKAWA K, et al. Preparation of Li3PS4 solid electrolyte using ethyl acetate as synthetic medium[J]. Solid State Ion, 2016, 288: 240–243.
[47] [47] LIU Z C, FU W J, ANDREW PAYZANT E, et al. Anomalous high ionic conductivity of nanoporous -Li3PS4[J]. J Am Chem Soc, 2013, 135(3): 975–978.
[48] [48] OHSAKI S, YANO T, HATADA A, et al. Size control of sulfide-based solid electrolyte particles through liquid-phase synthesis[J]. Powder Technol, 2021, 387: 415–420.
[49] [49] LIM H D, YUE X J, XING X, et al. Designing solution chemistries for the low-temperature synthesis of sulfide-based solid electrolytes[J]. J Mater Chem A, 2018, 6(17): 7370–7374.
[50] [50] SUBRAMANIAN Y, RAJAGOPAL R, RYU K S. High ionic–conducting Li-argyrodites synthesized using a simple and economic liquid-phase approach and their application in all solid-state-lithium batteries[J]. Scr Mater, 2021, 204: 114129.
[51] [51] WU J Y, YUAN L X, ZHANG W X, et al. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries[J]. Energy Environ Sci, 2021, 14(1): 12–36.
[52] [52] WANG D H, CHEN D Y, HOOD Z D, et al. An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure[J]. Angew Chem Int Ed, 2016, 55(30): 8551–8555.
[53] [53] WANG S, ZHANG Y B, ZHANG X, et al. High-conductivity argyrodite Li6PS5Cl solid electrolytes preparedviaoptimized sintering processes for all-solid-state lithium–sulfur batteries[J]. ACS Appl Mater Interfaces, 2018, 10(49): 42279–42285.
[54] [54] LI H, LIN Q S, WANG J Z, et al. A cost-effective sulfide solid electrolyte Li7P3S7.5O3.5 with low density and excellent anode compatibility[J]. Angew Chem Int Ed, 2024, 63(37): e202407892.
[55] [55] TAN D H S, BANERJEE A, DENG Z, et al. Enabling thin and flexible solid-state composite electrolytes by the scalable solution process[J]. ACS Appl Energy Mater, 2019, 2(9): 6542–6550.
[56] [56] WANG S, ZHANG X, LIU S J, et al. High-conductivity free-standing Li6PS5Cl/poly(vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries[J]. J Materiomics, 2020, 6(1): 70–76.
[57] [57] OH D Y, NAM Y J, PARK K H, et al. Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes: Toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries[J]. Adv Energy Mater, 2015, 5(22): 1500865.
[58] [58] INADA T, TAKADA K, KAJIYAMA A, et al. Fabrications and properties of composite solid-state electrolytes[J]. Solid State Ion, 2003, 158(3/4): 275–280.
[59] [59] WANG Y T, JU J W, DONG S M, et al. Facile design of sulfide-based all solid-state lithium metal battery:in situpolymerization within self-supported porous argyrodite skeleton[J]. Adv Funct Mater, 2021, 31(28): 2101523.
[60] [60] XU R C, YUE J, LIU S F, et al. Cathode-supported all-solid-state lithium–sulfur batteries with high cell-level energy density[J]. ACS Energy Lett, 2019, 4(5): 1073–1079.
[61] [61] LI S H, YANG Z H, WANG S B, et al. Sulfide-based composite solid electrolyte films for all-solid-state batteries[J]. Commun Mater, 2024, 5: 44.
[62] [62] YERSAK T, SALVADOR J R, SCHMIDT R D, et al. Hot pressed, fiber-reinforced (Li2S)70(P2S5)30 solid-state electrolyte separators for Li metal batteries[J]. ACS Appl Energy Mater, 2019, 2(5): 3523–3531.
[63] [63] CHOMETON R, DESCHAMPS M, DUGAS R, et al. Targeting the right metrics for an efficient solvent-free formulation of PEO: LiTFSI: Li6PS5Cl hybrid solid electrolyte[J]. ACS Appl Mater Interfaces, 2023, 15(50): 58794–58805.
[64] [64] JIANG Z, PENG H L, LI J R, et al. A facile path from fast synthesis of Li-argyrodite conductor to dry forming ultrathin electrolyte membrane for high-energy-density all-solid-state lithium batteries[J]. J Energy Chem, 2022, 74: 309–316.
[65] [65] LI Y X, WU Y J, WANG Z X, et al. Progress in solvent-free dry-film technology for batteries and supercapacitors[J]. Mater Today, 2022, 55: 92–109.
[66] [66] CHOI S J, LEE S H, HA Y C, et al. Synthesis and electrochemical characterization of a glass–ceramic Li7P2S8I solid electrolyte for all-solid-state Li-ion batteries[J]. J Electrochem Soc, 2018, 165(5): A957–A962.
[67] [67] INADA T, KOBAYASHI T, SONOYAMA N, et al. All solid-state sheet battery using lithium inorganic solid electrolyte, thio-LISICON[J]. J Power Sources, 2009, 194(2): 1085–1088.
[68] [68] ZHAO X L, XIANG P, WU J H, et al. Toluene tolerated Li9.88GeP1.96Sb0.04S11.88Cl0.12 solid electrolyte toward ultrathin membranes for all-solid-state lithium batteries[J]. Nano Lett, 2023, 23(1): 227–234.
[69] [69] SAKUDA A, KURATANI K, YAMAMOTO M, et al. All-solid-state battery electrode sheets prepared by a slurry coating process[J]. J Electrochem Soc, 2017, 164(12): A2474–A2478.
[70] [70] RIPHAUS N, STROBL P, STIASZNY B, et al. Slurry-based processing of solid electrolytes: A comparative binder study[J]. J Electrochem Soc, 2018, 165(16): A3993–A3999.
[71] [71] CAO D X, LI Q, SUN X, et al. Amphipathic binder integrating ultrathin and highly ion-conductive sulfide membrane for cell-level high-energy- density all-solid-state batteries[J]. Adv Mater, 2021, 33(52): e2105505.
[72] [72] LIU S J, ZHOU L, HAN J, et al. Super long-cycling all-solid-state battery with thin Li6PS5Cl-based electrolyte[J]. Adv Energy Mater, 2022, 12(25): 2270105.
[73] [73] ZHU G L, ZHAO C Z, PENG H J, et al. A self-limited free-standing sulfide electrolyte thin film for all-solid–state lithium metal batteries[J]. Adv Funct Mater, 2021, 31(32): 2101985.
[74] [74] ZHANG Y B, CHEN R J, WANG S, et al. Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries[J]. Energy Storage Mater, 2020, 25: 145–153.
[75] [75] OH D Y, NAM Y J, PARK K H, et al. Slurry-fabricable Li+-conductive polymeric binders for practical all-solid-state lithium-ion batteries enabled by solvate ionic liquids[J]. Adv Energy Mater, 2019, 9(16): 1802927.
[76] [76] GULLBREKKEN , KVALVG SCHNELL S. Coupled ion transport in concentrated PEO–LiTFSI polymer electrolytes[J]. New J Chem, 2023, 47(44): 20344–20357.
[77] [77] SUN W Q, MA C H, DONG F L, et al. Poly(lactic acid) block improves ambient-temperature ionic conductivity of pentablock copolymer electrolyte[J]. J Power Sources, 2024, 591: 233901.
[78] [78] HIPPAUF F, SCHUMM B, DOERFLER S, et al. Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach[J]. Energy Storage Mater, 2019, 21: 390–398.
[79] [79] ZHANG Z H, WU L P, ZHOU D, et al. Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries[J]. Nano Lett, 2021, 21(12): 5233–5239.
[80] [80] CHEN D Q, HU C J, CHEN Q, et al. High ceramic content composite solid-state electrolyte films preparedviaa scalable solvent-free process[J]. Nano Res, 2023, 16(3): 3847–3854.
[81] [81] JIANG T L, HE P G, WANG G X, et al. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries[J]. Adv Energy Mater, 2020, 10(12): 1903376.
[82] [82] YAMAMOTO M, TERAUCHI Y, SAKUDA A, et al. Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities[J]. Sci Rep, 2018, 8(1): 1212.
[83] [83] WANG H, HOOD Z D, XIA Y N, et al. Fabrication of ultrathin solid electrolyte membranes of -Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries[J]. J Mater Chem A, 2016, 4(21): 8091–8096.
[84] [84] LIM H D, LIM H K, XING X, et al. Solid electrolyte layers by solution deposition[J]. Adv Mater Interfaces, 2018, 5(8): 1701328.
[85] [85] KIM S, CHART Y A, NARAYANAN S, et al. Thin solid electrolyte separators for solid-state lithium–sulfur batteries[J]. Nano Lett, 2022, 22(24): 10176–10183.
[86] [86] EMLEY B, LIANG Y L, CHEN R, et al. On the quality of tape-cast thin films of sulfide electrolytes for solid-state batteries[J]. Mater Today Phys, 2021, 18: 100397.
[87] [87] KIM D H, LEE Y H, SONG Y B, et al. Thin and flexible solid electrolyte membranes with ultrahigh thermal stability derived from solution-processable Li argyrodites for all-solid-state Li-ion batteries[J]. ACS Energy Lett, 2020, 5(3): 718–727.
[88] [88] LEE Y G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nat Energy, 2020, 5: 299–308.
[89] [89] LIU G Z, SHI J M, ZHU M T, et al. Ultra-thin free-standing sulfide solid electrolyte film for cell–level high energy density all-solid-state lithium batteries[J]. Energy Storage Mater, 2021, 38: 249–254.
[90] [90] WANG C H, YU R Z, DUAN H, et al. Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes[J]. ACS Energy Lett, 2022, 7(1): 410–416.
[91] [91] JI W X, ZHANG X X, ZHENG D, et al. Practically accessible all-solid-state batteries enabled by organosulfide cathodes and sulfide electrolytes[J]. Adv Funct Mater, 2022, 32(27): 2202919.
[92] [92] W·HITELEY J M, TAYNTON P, ZHANG W, et al. Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix[J]. Adv Mater, 2015, 27(43): 6922–6927、.
[93] [93] VILLALUENGA I, WUJCIK K H, TONG W, et al. Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries[J]. Proc Natl Acad Sci USA, 2016, 113(1): 52–57.
[94] [94] LUO S, WANG Z, FAN A, et al. A high energy and power all-solid-state lithium battery enabled by modified sulfide electrolyte film[J]. J. Power Sources, 2021, 485: 229325.
[95] [95] LIU G, SHI J, ZHU M, et al. Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries[J]. Energy Storage Mater., 2021, 38: 249–254.
[96] [96] OH D Y, KIM K T, JUNG S H, et al. Tactical hybrids of Li+-conductive dry polymer electrolytes with sulfide solid electrolytes: Toward practical all-solid-state batteries with wider temperature operability[J]. Mater. Today, 2022, 53: 7–15.
[97] [97] LI M, FRERICHS J E, KOLEK M, et al. Solid-state lithium–sulfur battery enabled by thio-LiSICON/polymer composite electrolyte and sulfurized polyacrylonitrile cathode[J]. Adv. Funct. Mater., 2020, 30(14): 1910123. DOI: 10.1002/adfm.201910123
[98] [98] NAM Y J, CHO S J, OH D Y, et al. Bendable and thin sulfide solid electrolyte film: A new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries[J]. Nano Lett., 2015, 15(5): 3317–3323.
[99] [99] TAN D H S, WU E A, NGUYEN H, et al. Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte[J]. ACS Energy Lett., 2019, 4(10): 2418–2427.
[100] [100] KIM K T, KWON T Y, JUNG Y S. Scalable fabrication of sheet-type electrodes for practical all-solid-state batteries employing sulfide solid electrolytes[J]. Curr. Opin. Electrochem., 2022, 34: 101026.
[101] [101] NIKODIMOS Y, IHRIG M, TAKLU B W, et al. Solvent-free fabrication of freestanding inorganic solid electrolyte membranes: Challenges, progress, and perspectives[J]. Energy Storage Mater., 2023, 63: 103030. DOI: 10.1016/j.ensm.2023.103030
[102] [102] LEE K, KIM S, PARK J, et al. Selection of binder and solvent for solution-processed all-solid-state battery[J]. J. Electrochem. Soc., 2017, 164(9): A2075.
[103] [103] OH H, KIM G S, HWANG B U, et al. Development of a feasible and scalable manufacturing method for PTFE-based solvent-free lithium-ion battery electrodes[J]. Chem. Eng. J., 2024, 491: 151957.
[104] [104] WANG X, CHEN S, ZHANG K, et al. A polytetrafluoroethylene- based solvent-free procedure for the manufacturing of lithium-ion batteries[J]. Materials, 2023, 16(22).
[105] [105] HU L, REN Y, WANG C, et al. Fusion bonding technique for solvent-free fabrication of all-solid-state battery with ultrathin sulfide electrolyte[J]. Adv. Mater., 2024, 36(29): 2401909.
[106] [106] WANG C, HUANG D, LI S, et al. Three-dimensional-percolated ceramic nanoparticles along natural-cellulose-derived hierarchical networks for high Li+ conductivity and mechanical strength[J]. Nano Lett., 2020, 20(10): 7397–7404.
[107] [107] JIANG W, YAN L, ZENG X, et al. Adhesive sulfide solid electrolyte interface for lithium metal batteries[J]. ACS Appl. Mater. Interfaces, 2020, 12(49): 54876–54883.
[108] [108] RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[J]. Chem. Mater., 2016, 28(1): 266–273.
[109] [109] XU Z, WANG X, WANG Z, et al. Interface problems, modification strategies and prospects of Ni-rich layered oxide cathode materials in all-solid-state lithium batteries with sulfide electrolytes[J]. J. Power Sources, 2023, 571: 233079.
[110] [110] CHENG Z, LIU T, ZHAO B, et al. Recent advances in organic– inorganic composite solid electrolytes for all-solid-state lithium batteries[J]. Energy Storage Mater., 2021, 34: 388–416.
[111] [111] CAO D, ZHANG Y, NOLAN A M, et al. Stable thiophosphate-based all-solid-state lithium batteries through conformally interfacial nanocoating[J]. Nano Lett., 2020, 20(3): 1483–1490.
[112] [112] ZHAO B, JIANG Y, XIE J, et al. A double-shelled structure confining sulfur for lithium–sulfur batteries[J]. J. Alloys Compd., 2019, 811: 151434.
[113] [113] MING L, LI L, WEI C, et al. Superionic lithium argyrodite-type sulfide electrolyte with optimized composite cathode fabrication enabling stable All-solid-state Batteries[J]. Appl. Mater. Today, 2024, 40: 102410.
[114] [114] CRONAU M, DUCHARDT M, SZABO M, et al. Ionic Conductivityversusparticle size of ball-milled sulfide–based solid electrolytes: Strategy towards optimized composite cathode performance in all-solid- state batteries[J]. Batter. Supercaps, 2022, 5(6): e202200041.
[115] [115] TREVISANELLO E, RUESS R, CONFORTO G, et al. Polycrystalline and single crystalline NCM cathode materials-quantifying particle cracking, active surface area, and lithium diffusion[J]. Adv. Energy Mater., 2021, 11(18): 2003400.
[116] [116] CULVER S P, KOERVER R, ZEIER W G, et al. On the functionality of coatings for cathode active materials in thiophosphate-based all-solid-state batteries[J]. Adv. Energy Mater., 2019, 9(24): 1900626.
[117] [117] KASEMCHAINAN J, ZEKOLL S, SPENCER JOLLY D, et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells[J]. Nat. Mater., 2019, 18(10): 1105–1111.
[118] [118] WENZEL S, SEDLMAIER S J, DIETRICH C, et al. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes[J]. Solid State Ion., 2018, 318: 102–112.
[119] [119] WU J, LIU S, HAN F, et al. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Adv Mater, 2021, 33(6): 2000751.
[120] [120] TAN D H S, CHEN Y T, YANG H, et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes[J]. Science, 2021, 373(6562): 1494–1499.
[121] [121] CAO D, SUN X, WANG Y, et al. Bipolar stackings high voltage and high cell level energy density sulfide based all-solid-state batteries[J]. Energy Storage Mater, 2022, 48: 458–465.
Get Citation
Copy Citation Text
YU Canwen, LIU Xinyi, ZHANG Baisong, JIANG Yidong, DENG Yonghong, XU Xiaoxiong, CHI Shangsen. Development and Research Process of Ultra-Thin Sulfide Solid-State Electrolyte Film[J]. Journal of the Chinese Ceramic Society, 2025, 53(6): 1577
Category:
Received: Dec. 31, 2024
Accepted: Jul. 11, 2025
Published Online: Jul. 11, 2025
The Author Email: XU Xiaoxiong (xuxx@sustech.edu.cn)