Journal of the Chinese Ceramic Society, Volume. 53, Issue 6, 1577(2025)

Development and Research Process of Ultra-Thin Sulfide Solid-State Electrolyte Film

YU Canwen1, LIU Xinyi1, ZHANG Baisong1, JIANG Yidong1, DENG Yonghong1,2, XU Xiaoxiong2、*, and CHI Shangsen1,2
Author Affiliations
  • 1Department of Materials and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
  • 2School of Innovation and Entrepreneurship, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
  • show less
    References(121)

    [1] [1] DEISS E, WOKAUN A, BARRAS J L, et al. Average voltage, energy density, and specific energy of lithium-ion batteries: Calculation based on first principles[J]. J Electrochem Soc, 144(11): 3877–3881.

    [2] [2] DENG K R, ZENG Q G, WANG D, et al. Nonflammable organic electrolytes for high-safety lithium-ion batteries[J]. Energy Storage Mater, 2020, 32: 425–447.

    [3] [3] DENG K R, QIN J X, WANG S J, et al. Effective suppression of lithium dendrite growth using a flexible single-ion conducting polymer electrolyte[J]. Small, 2018: e1801420.

    [4] [4] KHARTON V V, MARQUES F M B, ATKINSON A. Transport properties of solid oxide electrolyte ceramics: A brief review[J]. Solid State Ion, 2004, 174(1/4): 135–149.

    [5] [5] HE B J, ZHANG F, XIN Y, et al. Halogen chemistry of solid electrolytes in all-solid-state batteries[J]. Nat Rev Chem, 2023, 7(12): 826–842.

    [6] [6] LAU J, DEBLOCK R H, BUTTS D M, et al. Sulfide solid electrolytes for lithium battery applications[J]. Adv Energy Mater, 2018, 8(27): 1800933.

    [7] [7] STETTNER T, WALTER F C, BALDUCCI P A. Imidazolium-based protic ionic liquids as electrolytes for lithium-ion batteries[J]. Batter Supercaps, 2019, 2(1): 55–59.

    [8] [8] AIHARA Y, ITO S, OMODA R, et al. The electrochemical characteristics and applicability of an amorphous sulfide-based solid ion conductor for the next-generation solid-state lithium secondary batteries[J]. Front Energy Res, 2016, 4: 18.

    [9] [9] SOUQUET J L, ROBINEL E, BARRAU B, et al. Glass formation and ionic conduction in the M2S–GeS2 (M = Li, Na, Ag) systems[J]. Solid State Ion, 1981, 3: 317–321.

    [10] [10] MURAYAMA M, KANNO R, IRIE M, et al. Synthesis of new lithium ionic conductor thio-LISICON: Lithium silicon sulfides system[J]. J Solid State Chem, 2002, 168(1): 140–148.

    [11] [11] ZHOU J B, CHEN P, WANG W, et al. Li7P3S11 electrolyte for all-solid-state lithium-ion batteries: Structure, synthesis, and applications[J]. Chem Eng J, 2022, 446: 137041.

    [12] [12] XU C, CHEN L Q, WU F. Unveiling the power of sulfide solid electrolytes for next-generation all-solid-state lithium batteries[J]. Next Mater, 2025, 6: 100428.

    [13] [13] RIBES M, BARRAU B, SOUQUET J L. Sulfide glasses: Glass forming region, structure and ionic conduction of glasses in Na2S–XS2 (X–Si; Ge), Na2S–P2S5 and Li2S–GeS2 systems[J]. J Non Cryst Solids, 1980, 38: 271–276.

    [14] [14] WEPPNER W. Engineering of solid state ionic devices[J]. Ionics, 2003, 9(5): 444–464.

    [15] [15] JOHNSON R T, BIEFELD R M, KNOTEK M L, et al. Ionic conductivity in solid electrolytes based on lithium aluminosilicate glass and glass–eramic[J]. J Electrochem Soc, 123(5): 680–687.

    [16] [16] SHAO Y J, ZHONG G M, LU Y X, et al. A novel NASICON-based glass–ceramic composite electrolyte with enhanced Na-ion conductivity[J]. Energy Storage Mater, 2019, 23: 514–521.

    [17] [17] KANNO R, MURAYAMA M. ChemInform abstract: Lithium ionic conductor thio-LISICON. The Li2S–GeS2–P2S5 system[J]. ChemInform, 2001, 32(42): no.

    [18] [18] KOBAYASHI T, IMADE Y, SHISHIHARA D, et al. All solid-state battery with sulfur electrode and thio-LISICON electrolyte[J]. J Power Sources, 2008, 182(2): 621–625.

    [19] [19] KATO Y, HORI S, KANNO R. Li10GeP2S12-type superionic conductors: Synthesis, structure, and ionic transportation[J]. Adv Energy Mater, 2020, 10(42): 2002153.

    [20] [20] KATO Y, SAITO R, SAKANO M, et al. Synthesis, structure and lithium ionic conductivity of solid solutions of Li10(Ge1−x Mx)P2S12 (M = Si, Sn)[J]. J Power Sources, 2014, 271: 60–64.

    [21] [21] KUHN A, GERBIG O, ZHU C B, et al. A new ultrafast superionic Li-conductor: Ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes[J]. Phys Chem Chem Phys, 2014, 16(28): 14669–14674.

    [22] [22] KIM K H, MARTIN S W. Structures and properties of oxygen-substituted Li10SiP2S12–xOx solid-state electrolytes[J]. Chem Mater, 2019, 31(11): 3984–3991.

    [23] [23] RAYAVARAPU P R, SHARMA N, PETERSON V K, et al. Variation in structure and Li+-ion migration in argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes[J]. J Solid State Electrochem, 2012, 16(5): 1807–1813.

    [24] [24] RAO R P, ADAMS S. Studies of lithium argyrodite solid electrolytes for all-solid-state batteries[J]. Phys Status Solidi A, 2011, 208(8): 1804–1807.

    [25] [25] VAN LANGEVELDE P H, KATSOUNAROS I, KOPER M T M. Electrocatalytic nitrate reduction for sustainable ammonia production[J]. Joule, 2021, 5(2): 290–294.

    [26] [26] ADELI P, BAZAK J D, PARK K H, et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution[J]. Angew Chem Int Ed, 2019, 58(26): 8681–8686.

    [27] [27] KRAFT M A, OHNO S, ZINKEVICH T, et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1–xGexS5I for all-solid-state batteries[J]. J Am Chem Soc, 2018, 140(47): 16330–16339.

    [28] [28] ZHOU L D, ASSOUD A, ZHANG Q, et al. New family of argyrodite thioantimonate lithium superionic conductors[J]. J Am Chem Soc, 2019, 141(48): 19002–19013.

    [29] [29] LIU H, LIANG Y H, WANG C, et al. Priority and prospect of sulfide-based solid-electrolyte membrane[J]. Adv Mater, 2023, 35(50): e2206013.

    [30] [30] ZHU Y Z, HE X F, MO Y F. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li–ion batteries[J]. J Mater Chem A, 2016, 4(9): 3253–3266.

    [31] [31] HIRAI K, TATSUMISAGO M, MINAMI T. Thermal and electrical properties of rapidly quenched glasses in the systems Li2S–SiS2– LixMOy (LixMOy = Li4 SiO4, Li2SO4)[J]. Solid State Ion, 1995, 78(3/4): 269–273.

    [32] [32] MIZUNO F, HAYASHI A, TADANAGA K, et al. High lithium ion conducting glass–ceramics in the system Li2S–P2S5[J]. Solid State Ion, 2006, 177(26/32): 2721–2725.

    [33] [33] XU R C, XIA X H, YAO Z J, et al. Preparation of Li7P3S11 glass–ceramic electrolyte by dissolution-evaporation method for all-solid-state lithium ion batteries[J]. Electrochim Acta, 2016, 219: 235–240.

    [34] [34] KANNO R, MURAYAMA M. Lithium ionic conductor thio-LISICON: The Li2S–GeS2–P2S5 system[J]. J Electrochem Soc, 2001, 148(7): A742.

    [35] [35] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nat Mater, 2011, 10(9): 682–686.

    [36] [36] HORI S, SUZUKI K, HIRAYAMA M, et al. Synthesis, structure, and ionic conductivity of solid solution, Li10+M1+P2−S12 (M = Si, Sn)[J]. Faraday Discuss, 2014, 176(0): 83–94.

    [37] [37] LIANG J W, CHEN N, LI X N, et al. Li10Ge(P1–xSbx)2S12 lithium-ion conductors with enhanced atmospheric stability[J]. Chem Mater, 2020, 32(6): 2664–2672.

    [38] [38] YU C, GANAPATHY S, HAGEMAN J, et al. Facile synthesis toward the optimal structure-conductivity characteristics of the argyrodite Li6PS5Cl solid-state electrolyte[J]. ACS Appl Mater Interfaces, 2018, 10(39): 33296–33306.

    [39] [39] FENG X Y, CHIEN P H, WANG Y, et al. Enhanced ion conduction by enforcing structural disorder in Li-deficient argyrodites Li6−xPS5−xCl1+x[J]. Energy Storage Mater, 2020, 30: 67–73.

    [40] [40] PATEL S V, BANERJEE S, LIU H Y, et al. Tunable lithium-ion transport in mixed-halide argyrodites Li6–xPS5–xClBrx: An unusual compositional space[J]. Chem Mater, 2021, 33(4): 1435–1443.

    [41] [41] KUDU U, FAMPRIKIS T, FLEUTOT B, et al. A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S−P2S5 binary system[J]. J Power Sources, 2018, 407: 31–43.

    [42] [42] PARK K H, BAI Q, KIM D H, et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries[J]. Adv Energy Mater, 2018, 8(18): 1800035.

    [43] [43] SCHLEM R, BURMEISTER C F, MICHALOWSKI P, et al. Energy storage materials for solid-state batteries: Design by mechanochemistry[J]. Adv Energy Mater, 2021, 11(30): 2101022.

    [44] [44] HOFER M, GRUBE M, BURMEISTER C F, et al. Effective mechanochemical synthesis of sulfide solid electrolyte Li3PS4 in a high energy ball mill by process investigation[J]. Adv Powder Technol, 2023, 34(6): 104004.

    [45] [45] MIURA A, ROSERO–NAVARRO N C, SAKUDA A, et al. Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery[J]. Nat Rev Chem, 2019, 3: 189–198.

    [46] [46] PHUC N H H, TOTANI M, MORIKAWA K, et al. Preparation of Li3PS4 solid electrolyte using ethyl acetate as synthetic medium[J]. Solid State Ion, 2016, 288: 240–243.

    [47] [47] LIU Z C, FU W J, ANDREW PAYZANT E, et al. Anomalous high ionic conductivity of nanoporous -Li3PS4[J]. J Am Chem Soc, 2013, 135(3): 975–978.

    [48] [48] OHSAKI S, YANO T, HATADA A, et al. Size control of sulfide-based solid electrolyte particles through liquid-phase synthesis[J]. Powder Technol, 2021, 387: 415–420.

    [49] [49] LIM H D, YUE X J, XING X, et al. Designing solution chemistries for the low-temperature synthesis of sulfide-based solid electrolytes[J]. J Mater Chem A, 2018, 6(17): 7370–7374.

    [50] [50] SUBRAMANIAN Y, RAJAGOPAL R, RYU K S. High ionic–conducting Li-argyrodites synthesized using a simple and economic liquid-phase approach and their application in all solid-state-lithium batteries[J]. Scr Mater, 2021, 204: 114129.

    [51] [51] WU J Y, YUAN L X, ZHANG W X, et al. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries[J]. Energy Environ Sci, 2021, 14(1): 12–36.

    [52] [52] WANG D H, CHEN D Y, HOOD Z D, et al. An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure[J]. Angew Chem Int Ed, 2016, 55(30): 8551–8555.

    [53] [53] WANG S, ZHANG Y B, ZHANG X, et al. High-conductivity argyrodite Li6PS5Cl solid electrolytes preparedviaoptimized sintering processes for all-solid-state lithium–sulfur batteries[J]. ACS Appl Mater Interfaces, 2018, 10(49): 42279–42285.

    [54] [54] LI H, LIN Q S, WANG J Z, et al. A cost-effective sulfide solid electrolyte Li7P3S7.5O3.5 with low density and excellent anode compatibility[J]. Angew Chem Int Ed, 2024, 63(37): e202407892.

    [55] [55] TAN D H S, BANERJEE A, DENG Z, et al. Enabling thin and flexible solid-state composite electrolytes by the scalable solution process[J]. ACS Appl Energy Mater, 2019, 2(9): 6542–6550.

    [56] [56] WANG S, ZHANG X, LIU S J, et al. High-conductivity free-standing Li6PS5Cl/poly(vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries[J]. J Materiomics, 2020, 6(1): 70–76.

    [57] [57] OH D Y, NAM Y J, PARK K H, et al. Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes: Toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries[J]. Adv Energy Mater, 2015, 5(22): 1500865.

    [58] [58] INADA T, TAKADA K, KAJIYAMA A, et al. Fabrications and properties of composite solid-state electrolytes[J]. Solid State Ion, 2003, 158(3/4): 275–280.

    [59] [59] WANG Y T, JU J W, DONG S M, et al. Facile design of sulfide-based all solid-state lithium metal battery:in situpolymerization within self-supported porous argyrodite skeleton[J]. Adv Funct Mater, 2021, 31(28): 2101523.

    [60] [60] XU R C, YUE J, LIU S F, et al. Cathode-supported all-solid-state lithium–sulfur batteries with high cell-level energy density[J]. ACS Energy Lett, 2019, 4(5): 1073–1079.

    [61] [61] LI S H, YANG Z H, WANG S B, et al. Sulfide-based composite solid electrolyte films for all-solid-state batteries[J]. Commun Mater, 2024, 5: 44.

    [62] [62] YERSAK T, SALVADOR J R, SCHMIDT R D, et al. Hot pressed, fiber-reinforced (Li2S)70(P2S5)30 solid-state electrolyte separators for Li metal batteries[J]. ACS Appl Energy Mater, 2019, 2(5): 3523–3531.

    [63] [63] CHOMETON R, DESCHAMPS M, DUGAS R, et al. Targeting the right metrics for an efficient solvent-free formulation of PEO: LiTFSI: Li6PS5Cl hybrid solid electrolyte[J]. ACS Appl Mater Interfaces, 2023, 15(50): 58794–58805.

    [64] [64] JIANG Z, PENG H L, LI J R, et al. A facile path from fast synthesis of Li-argyrodite conductor to dry forming ultrathin electrolyte membrane for high-energy-density all-solid-state lithium batteries[J]. J Energy Chem, 2022, 74: 309–316.

    [65] [65] LI Y X, WU Y J, WANG Z X, et al. Progress in solvent-free dry-film technology for batteries and supercapacitors[J]. Mater Today, 2022, 55: 92–109.

    [66] [66] CHOI S J, LEE S H, HA Y C, et al. Synthesis and electrochemical characterization of a glass–ceramic Li7P2S8I solid electrolyte for all-solid-state Li-ion batteries[J]. J Electrochem Soc, 2018, 165(5): A957–A962.

    [67] [67] INADA T, KOBAYASHI T, SONOYAMA N, et al. All solid-state sheet battery using lithium inorganic solid electrolyte, thio-LISICON[J]. J Power Sources, 2009, 194(2): 1085–1088.

    [68] [68] ZHAO X L, XIANG P, WU J H, et al. Toluene tolerated Li9.88GeP1.96Sb0.04S11.88Cl0.12 solid electrolyte toward ultrathin membranes for all-solid-state lithium batteries[J]. Nano Lett, 2023, 23(1): 227–234.

    [69] [69] SAKUDA A, KURATANI K, YAMAMOTO M, et al. All-solid-state battery electrode sheets prepared by a slurry coating process[J]. J Electrochem Soc, 2017, 164(12): A2474–A2478.

    [70] [70] RIPHAUS N, STROBL P, STIASZNY B, et al. Slurry-based processing of solid electrolytes: A comparative binder study[J]. J Electrochem Soc, 2018, 165(16): A3993–A3999.

    [71] [71] CAO D X, LI Q, SUN X, et al. Amphipathic binder integrating ultrathin and highly ion-conductive sulfide membrane for cell-level high-energy- density all-solid-state batteries[J]. Adv Mater, 2021, 33(52): e2105505.

    [72] [72] LIU S J, ZHOU L, HAN J, et al. Super long-cycling all-solid-state battery with thin Li6PS5Cl-based electrolyte[J]. Adv Energy Mater, 2022, 12(25): 2270105.

    [73] [73] ZHU G L, ZHAO C Z, PENG H J, et al. A self-limited free-standing sulfide electrolyte thin film for all-solid–state lithium metal batteries[J]. Adv Funct Mater, 2021, 31(32): 2101985.

    [74] [74] ZHANG Y B, CHEN R J, WANG S, et al. Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries[J]. Energy Storage Mater, 2020, 25: 145–153.

    [75] [75] OH D Y, NAM Y J, PARK K H, et al. Slurry-fabricable Li+-conductive polymeric binders for practical all-solid-state lithium-ion batteries enabled by solvate ionic liquids[J]. Adv Energy Mater, 2019, 9(16): 1802927.

    [76] [76] GULLBREKKEN , KVALVG SCHNELL S. Coupled ion transport in concentrated PEO–LiTFSI polymer electrolytes[J]. New J Chem, 2023, 47(44): 20344–20357.

    [77] [77] SUN W Q, MA C H, DONG F L, et al. Poly(lactic acid) block improves ambient-temperature ionic conductivity of pentablock copolymer electrolyte[J]. J Power Sources, 2024, 591: 233901.

    [78] [78] HIPPAUF F, SCHUMM B, DOERFLER S, et al. Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach[J]. Energy Storage Mater, 2019, 21: 390–398.

    [79] [79] ZHANG Z H, WU L P, ZHOU D, et al. Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries[J]. Nano Lett, 2021, 21(12): 5233–5239.

    [80] [80] CHEN D Q, HU C J, CHEN Q, et al. High ceramic content composite solid-state electrolyte films preparedviaa scalable solvent-free process[J]. Nano Res, 2023, 16(3): 3847–3854.

    [81] [81] JIANG T L, HE P G, WANG G X, et al. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries[J]. Adv Energy Mater, 2020, 10(12): 1903376.

    [82] [82] YAMAMOTO M, TERAUCHI Y, SAKUDA A, et al. Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities[J]. Sci Rep, 2018, 8(1): 1212.

    [83] [83] WANG H, HOOD Z D, XIA Y N, et al. Fabrication of ultrathin solid electrolyte membranes of -Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries[J]. J Mater Chem A, 2016, 4(21): 8091–8096.

    [84] [84] LIM H D, LIM H K, XING X, et al. Solid electrolyte layers by solution deposition[J]. Adv Mater Interfaces, 2018, 5(8): 1701328.

    [85] [85] KIM S, CHART Y A, NARAYANAN S, et al. Thin solid electrolyte separators for solid-state lithium–sulfur batteries[J]. Nano Lett, 2022, 22(24): 10176–10183.

    [86] [86] EMLEY B, LIANG Y L, CHEN R, et al. On the quality of tape-cast thin films of sulfide electrolytes for solid-state batteries[J]. Mater Today Phys, 2021, 18: 100397.

    [87] [87] KIM D H, LEE Y H, SONG Y B, et al. Thin and flexible solid electrolyte membranes with ultrahigh thermal stability derived from solution-processable Li argyrodites for all-solid-state Li-ion batteries[J]. ACS Energy Lett, 2020, 5(3): 718–727.

    [88] [88] LEE Y G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nat Energy, 2020, 5: 299–308.

    [89] [89] LIU G Z, SHI J M, ZHU M T, et al. Ultra-thin free-standing sulfide solid electrolyte film for cell–level high energy density all-solid-state lithium batteries[J]. Energy Storage Mater, 2021, 38: 249–254.

    [90] [90] WANG C H, YU R Z, DUAN H, et al. Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes[J]. ACS Energy Lett, 2022, 7(1): 410–416.

    [91] [91] JI W X, ZHANG X X, ZHENG D, et al. Practically accessible all-solid-state batteries enabled by organosulfide cathodes and sulfide electrolytes[J]. Adv Funct Mater, 2022, 32(27): 2202919.

    [92] [92] W·HITELEY J M, TAYNTON P, ZHANG W, et al. Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix[J]. Adv Mater, 2015, 27(43): 6922–6927、.

    [93] [93] VILLALUENGA I, WUJCIK K H, TONG W, et al. Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries[J]. Proc Natl Acad Sci USA, 2016, 113(1): 52–57.

    [94] [94] LUO S, WANG Z, FAN A, et al. A high energy and power all-solid-state lithium battery enabled by modified sulfide electrolyte film[J]. J. Power Sources, 2021, 485: 229325.

    [95] [95] LIU G, SHI J, ZHU M, et al. Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries[J]. Energy Storage Mater., 2021, 38: 249–254.

    [96] [96] OH D Y, KIM K T, JUNG S H, et al. Tactical hybrids of Li+-conductive dry polymer electrolytes with sulfide solid electrolytes: Toward practical all-solid-state batteries with wider temperature operability[J]. Mater. Today, 2022, 53: 7–15.

    [97] [97] LI M, FRERICHS J E, KOLEK M, et al. Solid-state lithium–sulfur battery enabled by thio-LiSICON/polymer composite electrolyte and sulfurized polyacrylonitrile cathode[J]. Adv. Funct. Mater., 2020, 30(14): 1910123. DOI: 10.1002/adfm.201910123

    [98] [98] NAM Y J, CHO S J, OH D Y, et al. Bendable and thin sulfide solid electrolyte film: A new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries[J]. Nano Lett., 2015, 15(5): 3317–3323.

    [99] [99] TAN D H S, WU E A, NGUYEN H, et al. Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte[J]. ACS Energy Lett., 2019, 4(10): 2418–2427.

    [100] [100] KIM K T, KWON T Y, JUNG Y S. Scalable fabrication of sheet-type electrodes for practical all-solid-state batteries employing sulfide solid electrolytes[J]. Curr. Opin. Electrochem., 2022, 34: 101026.

    [101] [101] NIKODIMOS Y, IHRIG M, TAKLU B W, et al. Solvent-free fabrication of freestanding inorganic solid electrolyte membranes: Challenges, progress, and perspectives[J]. Energy Storage Mater., 2023, 63: 103030. DOI: 10.1016/j.ensm.2023.103030

    [102] [102] LEE K, KIM S, PARK J, et al. Selection of binder and solvent for solution-processed all-solid-state battery[J]. J. Electrochem. Soc., 2017, 164(9): A2075.

    [103] [103] OH H, KIM G S, HWANG B U, et al. Development of a feasible and scalable manufacturing method for PTFE-based solvent-free lithium-ion battery electrodes[J]. Chem. Eng. J., 2024, 491: 151957.

    [104] [104] WANG X, CHEN S, ZHANG K, et al. A polytetrafluoroethylene- based solvent-free procedure for the manufacturing of lithium-ion batteries[J]. Materials, 2023, 16(22).

    [105] [105] HU L, REN Y, WANG C, et al. Fusion bonding technique for solvent-free fabrication of all-solid-state battery with ultrathin sulfide electrolyte[J]. Adv. Mater., 2024, 36(29): 2401909.

    [106] [106] WANG C, HUANG D, LI S, et al. Three-dimensional-percolated ceramic nanoparticles along natural-cellulose-derived hierarchical networks for high Li+ conductivity and mechanical strength[J]. Nano Lett., 2020, 20(10): 7397–7404.

    [107] [107] JIANG W, YAN L, ZENG X, et al. Adhesive sulfide solid electrolyte interface for lithium metal batteries[J]. ACS Appl. Mater. Interfaces, 2020, 12(49): 54876–54883.

    [108] [108] RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[J]. Chem. Mater., 2016, 28(1): 266–273.

    [109] [109] XU Z, WANG X, WANG Z, et al. Interface problems, modification strategies and prospects of Ni-rich layered oxide cathode materials in all-solid-state lithium batteries with sulfide electrolytes[J]. J. Power Sources, 2023, 571: 233079.

    [110] [110] CHENG Z, LIU T, ZHAO B, et al. Recent advances in organic– inorganic composite solid electrolytes for all-solid-state lithium batteries[J]. Energy Storage Mater., 2021, 34: 388–416.

    [111] [111] CAO D, ZHANG Y, NOLAN A M, et al. Stable thiophosphate-based all-solid-state lithium batteries through conformally interfacial nanocoating[J]. Nano Lett., 2020, 20(3): 1483–1490.

    [112] [112] ZHAO B, JIANG Y, XIE J, et al. A double-shelled structure confining sulfur for lithium–sulfur batteries[J]. J. Alloys Compd., 2019, 811: 151434.

    [113] [113] MING L, LI L, WEI C, et al. Superionic lithium argyrodite-type sulfide electrolyte with optimized composite cathode fabrication enabling stable All-solid-state Batteries[J]. Appl. Mater. Today, 2024, 40: 102410.

    [114] [114] CRONAU M, DUCHARDT M, SZABO M, et al. Ionic Conductivityversusparticle size of ball-milled sulfide–based solid electrolytes: Strategy towards optimized composite cathode performance in all-solid- state batteries[J]. Batter. Supercaps, 2022, 5(6): e202200041.

    [115] [115] TREVISANELLO E, RUESS R, CONFORTO G, et al. Polycrystalline and single crystalline NCM cathode materials-quantifying particle cracking, active surface area, and lithium diffusion[J]. Adv. Energy Mater., 2021, 11(18): 2003400.

    [116] [116] CULVER S P, KOERVER R, ZEIER W G, et al. On the functionality of coatings for cathode active materials in thiophosphate-based all-solid-state batteries[J]. Adv. Energy Mater., 2019, 9(24): 1900626.

    [117] [117] KASEMCHAINAN J, ZEKOLL S, SPENCER JOLLY D, et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells[J]. Nat. Mater., 2019, 18(10): 1105–1111.

    [118] [118] WENZEL S, SEDLMAIER S J, DIETRICH C, et al. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes[J]. Solid State Ion., 2018, 318: 102–112.

    [119] [119] WU J, LIU S, HAN F, et al. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Adv Mater, 2021, 33(6): 2000751.

    [120] [120] TAN D H S, CHEN Y T, YANG H, et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes[J]. Science, 2021, 373(6562): 1494–1499.

    [121] [121] CAO D, SUN X, WANG Y, et al. Bipolar stackings high voltage and high cell level energy density sulfide based all-solid-state batteries[J]. Energy Storage Mater, 2022, 48: 458–465.

    Tools

    Get Citation

    Copy Citation Text

    YU Canwen, LIU Xinyi, ZHANG Baisong, JIANG Yidong, DENG Yonghong, XU Xiaoxiong, CHI Shangsen. Development and Research Process of Ultra-Thin Sulfide Solid-State Electrolyte Film[J]. Journal of the Chinese Ceramic Society, 2025, 53(6): 1577

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 31, 2024

    Accepted: Jul. 11, 2025

    Published Online: Jul. 11, 2025

    The Author Email: XU Xiaoxiong (xuxx@sustech.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240855

    Topics