Laser & Optoelectronics Progress, Volume. 62, Issue 4, 0411003(2025)
Phase Retrieval Based on Fractional Order Total Variation Algorithm
Fig. 2. Test images and support. (a) Cameraman; (b) Lena; (c) Fruits; (d) support; (e) amplitude information
Fig. 3. Variation of PSNR of Cameraman with iterations under different oversampling rates. (a) 3.88; (b) 3.34; (c) 2.91; (d) 2.56
Fig. 4. Reconstruction results of different orders of Cameraman with an oversampling rate of 3.34. (a) Original image; (b) α=1.0; (c) α=1.2; (d) α=1.4; (e) α=1.6; (f) α=1.8
Fig. 5. Comparison of reconstruction results of different algorithms under noiseless conditions. (a)‒(c) Original images; (d)‒(f) HIO algorithm; (g)‒(i) RAAR algorithm; (j)‒(l) RAARL1 algorithm; (m)‒(o) FOTVPR algorithm with α=1.0; (p)‒(r) FOTVPR algorithm with α=1.6
Fig. 6. Comparison of reconstruction results of different algorithms under noise conditions. (a)‒(c) Original images; (d)‒(f) OSS algorithm; (g)‒(i) RAAR algorithm; (j)‒(l) RAARL1 algorithm; (m)‒(o) FOTVPR algorithm with α=1.0; (p)‒(r) FOTVPR algorithm with α=1.6
Fig. 7. Convergence curves of Fruits image reconstruction with 10% Gaussian noise. (a) PSNR iteration curves; (b) relative residues iteration curves
|
|
|
|
|
Get Citation
Copy Citation Text
Mengwei Qin, Bo Chen, Bingliang Li, Jing Yang. Phase Retrieval Based on Fractional Order Total Variation Algorithm[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0411003
Category: Imaging Systems
Received: Jun. 12, 2024
Accepted: Aug. 1, 2024
Published Online: Mar. 5, 2025
The Author Email: Bo Chen (chenbo182001@163.com)
CSTR:32186.14.LOP241465