Laser & Infrared, Volume. 54, Issue 4, 654(2024)
Photometric compensation method for projection images based on attentional feature enhancement
[1] [1] Takada M, Takeuchi M, Suzuki E, et al. Real-time navigation system for sentinel lymph node biopsy in breast cancer patients using projection mapping with indocyanine green fluorescence[J]. Breast Cancer, 2018, 25(6): 650-655.
[2] [2] Nishino H, Hatano E, Seo S, et al. Real-time navigation for liver surgery using projection mapping with indocyanine green fluorescence: development of the novel medical imaging projection system[J]. Annals of Surgery, 2018, 267(6): 1134-1140.
[3] [3] Fukuhara R, Kaneda K, Tamaki T, et al. A projection mapping system onto a human body for medical applications[C]//Eurographics (Posters), 2019: 29-30.
[4] [4] Jones B R, Benko H, Ofek E, et al. Illumi room: peripheral projected illusions for interactive experiences[C]//ACM SIGGRAPH 2013 Emerging Technologies, 2013: 869-878.
[5] [5] Punpongsanon P, Iwai D, Sato K. Softar: visually manipulating haptic softness perception in spatial augmented reality[J]. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(11): 1279-1288.
[6] [6] Gomes A, Fernandes K, Wang D. Surface prediction for spatial augmented reality applications[J]. Virtual Reality, 2021, 25(3): 761-771.
[7] [7] Gao Y, Zhao Y, Xie L, et al. A projector-based augmented reality navigation system for computer-assisted surgery[J]. Sensors, 2021, 21(9): 2931.
[8] [8] Hashimoto N, Yoshimura K. Radiometric compensation for non-rigid surfaces by continuously estimating inter-pixel correspondence[J]. The Visual Computer, 2021, 37(1): 175-187.
[9] [9] Kurth P, Lange V, Stamminger M, et al. Real-time adaptive color correction in dynamic projection mapping[C]//2020 IEEE International Symposium on Mixed and Augmented Reality, 2020: 174-184.
[10] [10] Huang B. Ling H. End-to-end projector photometric compensation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 6810-6819.
[11] [11] Huang B, Ling H. Compennet ++: end-to-end full projector compensation[C]//2019 IEEE/CVF International Conference on Computer Vision, 2019: 7165-7174.
[12] [12] Huang B, Sun T, Ling H. End-to-end full projector compensation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 2953-2967.
[13] [13] Kageyama Y, Iwai D, Sato K. Online projector deblurring using a convolutional neural network[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(5): 2223-2233.
[14] [14] Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3[C]//2019 IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.
[15] [15] Tan M, Le Q. Efficientnet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the 36th International Conference on Machine Learning, 2019: 6105-6114.
[16] [16] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[17] [17] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[18] [18] Johnson J, Alahi A, Fei-Fei L. Perceptual losses for real-time style transfer and super-resolution[C]//European Conference on Computer Vision, 2016: 694-711.
Get Citation
Copy Citation Text
YU Cui-hong, HAN Cheng, XIE Li-xia, ZHANG Chao. Photometric compensation method for projection images based on attentional feature enhancement[J]. Laser & Infrared, 2024, 54(4): 654
Category:
Received: Jun. 27, 2023
Accepted: May. 21, 2025
Published Online: May. 21, 2025
The Author Email: HAN Cheng (hancheng@cust.edu.cn)