Oncoradiology, Volume. 34, Issue 3, 266(2025)

Preliminary study on the identification of benign and malignant lung nodules and prediction of pathological types using artificial intelligence software based on CT target scan

CHEN Lei1, ZHANG Zehua1, LUO Rong1, XIANG Huijing1, LI Ruimin1,2, and ZHOU Zhengrong1,2、*
Author Affiliations
  • 1Department of Radiology, Minhang Branch, Cancer Hospital Affiliated to Fudan University, Shanghai 200240, China
  • 2Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
  • show less
    References(12)

    [1] [1] BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263.

    [2] [2] MAZZONE P J, SILVESTRI G A, SOUTER L H, et al. Screening for lung cancer: CHEST guideline and expert panel report[J]. Chest, 2021, 160(5): e427-e494.

    [4] [4] MOON Y, LEE K Y, PARK J K. The prognosis of invasive adenocarcinoma presenting as ground-glass opacity on chest computed tomography after sublobar resection[J]. J Thorac Dis, 2017, 9(10): 3782-3792.

    [5] [5] CHEN P H, CHANG K M, TSENG W C, et al. Invasiveness and surgical timing evaluation by clinical features of ground-glass opacity nodules in lung cancers[J]. Thorac Cancer, 2019, 10(11): 2133-2141.

    [6] [6] HUALONG Y, SHIHE L, CHUANYU Z, et al. Computed tomography and pathology evaluation of lung ground-glass opacity[J]. Exp Ther Med, 2018, 16(6): 5305-5309.

    [7] [7] KIM Y W, KWON B S, LIM S Y, et al. Lung cancer probability and clinical outcomes of baseline and new subsolid nodules detected on low-dose CT screening[J]. Thorax, 2021, 76(10): 980-988.

    [8] [8] WANG B, ZHANG H, LI W, et al. Neural network-based model for evaluating inert nodules and volume doubling time in T1 lung adenocarcinoma: a nested case-control study[J]. Front Oncol, 2023, 13: 1037052.

    [9] [9] SNOECKX A, REYNTIENS P, DESBUQUOIT D, et al. Evaluation of the solitary pulmonary nodule: size matters, but do not ignore the power of morphology[J]. Insights Imaging, 2018, 9(1): 73-86.

    [10] [10] SOHN J H, FIELDS B K K. Radiomics and deep learning to predict pulmonary nodule metastasis at CT[J]. Radiology, 2024, 311(1): e233356.

    [11] [11] VAN DER VELDEN B H M, KUIJF H J, GILHUIJS K G A, et al. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis[J]. Med Image Anal, 2022, 79: 102470.

    [12] [12] VARGHESE C, RAJAGOPALAN S, KARWOSKI R A, et al. Computed tomography–based score indicative of lung cancer aggression (SILA) predicts the degree of histologic tissue invasion and patient survival in lung adenocarcinoma spectrum[J]. J Thorac Oncol, 2019, 14(8): 1419-1429.

    [14] [14] HUANG L Y, LIN W H, XIE D P, et al. Development and validation of a preoperative CT-based radiomic nomogram to predict pathology invasiveness in patients with a solitary pulmonary nodule: a machine learning approach, multicenter, diagnostic study[J]. Eur Radiol, 2022, 32(3): 1983-1996.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Lei, ZHANG Zehua, LUO Rong, XIANG Huijing, LI Ruimin, ZHOU Zhengrong. Preliminary study on the identification of benign and malignant lung nodules and prediction of pathological types using artificial intelligence software based on CT target scan[J]. Oncoradiology, 2025, 34(3): 266

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 15, 2025

    Accepted: Aug. 22, 2025

    Published Online: Aug. 22, 2025

    The Author Email: ZHOU Zhengrong (zhouzr_16@163.com)

    DOI:10.19732/j.cnki.2096-6210.2025.03.009

    Topics