Acta Photonica Sinica, Volume. 51, Issue 8, 0851514(2022)
In vivo Skull Optical Clearing Technique and its Applications(Invited)
[1] LAVISSE S, GOUTAL S, CWIMBERLEY et al. Increased microglial activation in patients with Parkinson disease using [18F]-DPA714 TSPO PET imaging[J]. Parkinsonism & Related Disorders, 82, 29-36(2021).
[2] JOVIN T G, NOGUEIRA R G, GLANSBERG M et al. Thrombectomy for anterior circulation stroke beyond 6 h from time last known well (AURORA): a systematic review and individual patient data meta-analysis[J]. Lancet, 399, 249-258(2022).
[3] VILLEMAGNE V L, BARKHOF F, GARIBOTTO V et al. Molecular imaging approaches in dementia[J]. Radiology, 298, 517-530(2021).
[4] JONAS OGIEN A D, MAXINE C, JEAN-LUC P et al. Line-field confocal optical coherence tomography for three-dimensional skin imaging[J]. Frontiers of Optoelectronics, 13, 381-392(2020).
[5] CHENG Zhongwen, MA Haigang, WANG Zhiyang et al.
[6] WANG Xiaohui, LI Zhipeng, DING Yadan et al. Enhanced photothermal-photodynamic therapy for glioma based on near-infrared dye functionalized Fe3O4 superparticles[J]. Chemical Engineering Journal, 381, 122693-122693(2020).
[7] YAKOVLEV D V, FARRAKHOVA D S, SHIRYAEV A A et al. New approaches to diagnostics and treatment of cholangiocellular cancer based on photonics methods[J]. Frontiers of Optoelectronics, 13, 352-359(2020).
[8] KAZACHKINA N, LYMAR J, SHCHESLAVSKIY V et al. A pilot study of the dynamics of tissue oxygenation
[9] LEI Zhao, ZENG Yun, ZHANG Xiaofen et al. Photoacoustic reporter genes for noninvasive molecular imaging and theranostics[J]. Journal of Innovative Optical Health Sciences, 13, 2030005(2020).
[10] YANG Wenzhao, CHEN S. Time-gated fluorescence imaging: advances in technology and biological applications[J]. Journal of Innovative Optical Health Sciences, 13, 12-31(2020).
[11] HONG Guosong, ANTARIS A L, DAI Hongjie. Near-infrared fluorophores for biomedical imaging[J]. Nature Biomedical Engineering, 1, 0010(2017).
[12] FAN Jianglan, RIVERA J A, SUN Wei et al. High-speed volumetric two-photon fluorescence imaging of neurovascular dynamics[J]. Nature Communication, 11, 6020(2020).
[13] KISLER K, LAZIC D, SWEENEY M D et al.
[14] LI Dongyu, XIA Qing, YU Tingting et al. Transmissive-detected laser speckle contrast imaging for blood flow monitoring in thick tissue: from Monte Carlo simulation to experimental demonstration[J]. Light: Science & Applications, 10, 241(2021).
[15] KISLER K, NIKOLAKOPOULOU A M, ZLOKOVIC B V. Microglia have a grip on brain microvasculature[J]. Nature Communications, 12, 5290(2021).
[16] LEE S, NAMGOONG J M, KIM Y et al. Multimodal imaging of laser speckle contrast imaging combined with mosaic filter-based hyperspectral imaging for precise surgical guidance[J]. IEEE Transactions on Biomedical Engineering, 69, 443-452(2022).
[17] MARTINEZ-VEGA B, LEON R, FABELO H et al. Oxygen saturation measurement using hyperspectral imaging targeting real-time monitoring[C], 480-487(2021).
[18] RAVI D, FABELO H, CALLIC G M et al. Manifold embedding and semantic segmentation for intraoperative guidance with hyperspectral brain imaging[J]. IEEE Transactions on Medical Imaging, 36, 1845-1857(2017).
[19] HUSSAIN A, PETERSEN W, STALIEY J et al. Quantitative blood oxygen saturation imaging using combined photoacoustics and acousto-optics[J]. Optics Letters, 41, 1720-1723(2016).
[20] CHEN C, WANG Ruikang. Optical coherence tomography based angiography[J]. Biomedical Optics Express, 8, 1056-1082(2017).
[21] MONTEIRO-HENRIQUES I, ROCHA-SOUSA A, BARBOSA-BREDA J. Optical coherence tomography angiography changes in cardiovascular systemic diseases and risk factors: a review[J]. Acta Ophthalmologica, 100, e1-e15(2022).
[22] SUN Bin, WANG Mengran, HOERDER S A et al. Intravital imaging of the murine subventricular zone with three photon microscopy[J]. Cerebral Cortex, 32, 3057-3067(2022).
[23] WANG Tianyu, XU C. Three-photon neuronal imaging in deep mouse brain[J]. Optica, 7, 947-960(2020).
[24] WANG Tianyu, OUZOUNOV D G, WU Chunyan et al. Three-photon imaging of mouse brain structure and function through the intact skull[J]. Nature Methods, 15, 789-792(2018).
[25] WEISENBURGER S, TEJERA F, DEMAS J et al. Volumetric Ca2+ imaging in the mouse brain using hybrid multiplexed sculpted light microscopy[J]. Cell, 177, 1050-1066(2019).
[26] CHEN Wei, NATAN R G, YANG Yuhan et al.
[27] LU Fei, CAO Jiating, SU Qinglun et al. Recent advances in fluorescence imaging of traumatic brain injury in animal models[J]. Frontiers in Molecular Biosciences, 8, 660993(2021).
[28] ZHANG Haochen, YU Dongqin, LIU Shuting et al. NIR‐Ⅱ Hydrogen‐Bonded Organic Frameworks (HOFs) used for target‐specific amyloid-β photooxygenation in an alzheimer's disease model[J]. Angewandte Chemie International Edition, 61, e202109068(2022).
[29] KNEIPP M, TURNER J, ESTRADA H et al. Effects of the murine skull in optoacoustic brain microscopy[J]. Journal of Biophotonics, 9, 117-123(2016).
[30] FAN Xiaofeng, ZHENG Weitao, SINGH D. Light scattering and surface plasmons on small spherical particles[J]. Light-Science & Applications, 3, e179(2014).
[31] HOLTMAAT A, BONHOEFFER T, CHOW D K et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window[J]. Nature Protocols, 4, 1128-1144(2009).
[32] YANG Guang, PAN Feng, PARKHURST C N et al. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice[J]. Nature Protocols, 5, 201-208(2010).
[33] YANG Shanshan, LIU Kezhou, DING Huijie et al. Longitudinal
[34] DORAND R D, BARKAUSKAS D S, EVANS T A et al. Comparison of intravital thinned skull and cranial window approaches to study CNS immunobiology in the mouse cortex[J]. Intravital, 3, e21978(2014).
[35] DREW P J, SHIH A Y, DRISCOLL J D et al. Chronic optical access through a polished and reinforced thinned skull[J]. Nature Methods, 7, 981-U960(2010).
[36] MANGLANI M, MCGAVERN D B. Intravital imaging of neuroimmune interactions through a thinned skull[J]. Current Protocols in Immunology, 120, 24.2.1-24.2.12(2018).
[37] COELHO-SANTOS V, BERTHIAUME A A, ORNELAS S et al. Imaging the construction of capillary networks in the neonatal mouse brain[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, e2100866118(2021).
[38] ZHU Jingtan, LIU Xiaomei, DENG Yating et al. Tissue optical clearing for 3D visualization of vascular networks: a review[J]. Vascular Pharmacology, 141, 106905(2021).
[39] YU Tingting, ZHU Jingtan, LI Dongyu et al. Physical and chemical mechanisms of tissue optical clearing[J]. Iscience, 24, 102178(2021).
[40] WAN Peng, ZHU Jingtan, XU Jianyi et al. Evaluation of seven optical clearing methods in mouse brain[J]. Neurophotonics, 5, 035007(2018).
[41] YU Tingting, ZHU Jingtan, LI Yusha et al. RTF: a rapid and versatile tissue optical clearing method[J]. Scientific Reports, 8, 1964(2018).
[42] WAN Peng, ZHU Jingtan, YU Tingting et al. Comparison of seven optical clearing methods for mouse brain[J]. Neural Imaging and Sensing, 2018, 10481(2018).
[43] YU Tingting, ZHU Jingtan, LI Yusha et al. ReagentTF: a rapid and versatile optical clearing method for biological imaging[J]. Neural Imaging and Sensing, 10051(2017).
[44] YU Tingting, QI Yisong, WANG Jianru et al. Rapid and prodium iodide-compatible optical clearing method for brain tissue based on sugar/sugar-alcohol[J]. Journal of Biomedical Optics, 21, 81203(2016).
[45] GENIN V D, GENINA E A, TUCHIN V V et al. Glycerol effects on optical, weight and geometrical properties of skin tissue[J]. Journal of Innovative Optical Health Sciences, 14, 2142006(2021).
[46] GENINA E A, SURKOV Y I, SEREBRYAKOVA I A et al. Rapid ultrasound optical clearing of human light and dark skin[J]. IEEE transactions on medical imaging, 39, 3198-3206(2020).
[47] ENFIELD J, MCGRATH J, DALY S M et al. Enhanced
[48] WANG Jing, ZHANG Yang, XU Tonghui et al. An innovative transparent cranial window based on skull optical clearing[J]. Laser Physics Letters, 9, 469-473(2012).
[49] GENINA E A, BASHKATOV A N, TUCHIN V V. Optical clearing of cranial bone[J]. Advances in Optical Technologies, 2008, 267867(2008).
[50] CHEN Yage, LIU Shaojun, LIU Hongji et al. Coherent Raman scattering unravelling mechanisms underlying skull optical clearing for through-skull brain imaging[J]. Analytical Chemistry, 91, 9371-9375(2019).
[51] LI Dongyu, ZHENG Zheng, YU Tingting et al. Visible-near infrared-Ⅱ skull optical clearing window for
[52] YANG Xiaoquan, ZHANG Yang, ZHAO Kai et al. Skull optical clearing solution for enhancing ultrasonic and photoacoustic imaging[J]. IEEE Transactions on Medical Imaging, 35, 1903-1906(2016).
[53] ZHAO Yanjie, YU Tingting, ZHANG Chao et al. Skull optical clearing window for
[54] ZHANG Chao, FENG Wwei, ZHAO Yanjie et al. A large, switchable optical clearing skull window for cerebrovascular imaging[J]. Theranostics, 8, 2696-2708(2018).
[55] CHEN Yage, LIU Shaojun, LIU Hongjie et al. Coherent Raman scattering unravelling mechanisms underlying skull optical clearing for through-skull brain imaging[J]. Analytical Chemistry, 91, 9371-9375(2019).
[56] WELSHER K, SHERLOCK S P, DAI Hongjie. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window[J]. Proceedings of the National Academy of Sciences of the United States of America, 108, 8943-8948(2011).
[57] WAN Hao, YUE Jingying, ZHU Shoujun et al. A bright organic NIR-Ⅱ nanofluorophore for three-dimensional imaging into biological tissues[J]. Nature Communications, 9, 1171(2018).
[58] ZHANG Mingxi, YUE Jingying, CUI Ran et al. Bright quantum dots emitting at similar to 1,600 nm in the NIR-Ⅱb window for deep tissue fluorescence imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 6590-6595(2018).
[59] YU Wenbin, GUO Bin, ZHANG Hequn et al. NIR-Ⅱ fluorescence
[60] QI Ji, SUN Chaowei, ZEBIBULA A et al. Real-time and high-resolution bioimaging with bright aggregation-induced emission dots in short-wave infrared region[J]. Advanced Materials, 30, 1706856(2018).
[61] FENG Wei, LIU Shaojun, ZHANG Chao et al. Comparison of cerebral and cutaneous microvascular dysfunction with the development of type 1 diabetes[J]. Theranostics, 9, 5854-5868(2019).
[62] ZHANG Chao, FENG Wei, VODOVOZOVA E et al. Photodynamic opening of the blood-brain barrier to high weight molecules and liposomes through an optical clearing skull window[J]. Biomedical Optics Express, 9, 4850-4862(2018).
[63] FENG Wei, ZHANG Chao, YU Tingting et al.
[64] HU Zhengwu, LI Dongyu, ZHONG Xiang et al.
[65] LI Dongyu, DENG Lu, HU Zhengwu et al. Optical clearing imaging assisted evaluation of urokinase thrombolytic therapy on cerebral vessels with different sizes[J]. Biomedical Optics Express, 13, 3243-3258(2022).
[66] GUO Lili, XIONG Huan, KIM J I et al. Dynamic rewiring of neural circuits in the motor cortex in mouse models of Parkinson's disease[J]. Nat Neurosci, 18, 1299-1309(2015).
[67] DROMARD Y, ARANGO-LIEVANO M, FONTANAUD P et al. Dual imaging of dendritic spines and mitochondria
[68] XU Tonghui, YU Xinzhu, PERLIK A J et al. Rapid formation and selective stabilization of synapses for enduring motor memories[J]. Nature, 462, 915-919(2009).
[69] YU Xinzhu, WANG G, GILMORE A et al. Accelerated experience-dependent pruning of cortical synapses in ephrin-A2 knockout mice[J]. Neuron, 80, 64-71(2013).
[70] XU Tonghui, WANG Shaofang, LALCHANDANI R R et al. Motor learning in animal models of Parkinson's disease: Aberrant synaptic plasticity in the motor cortex[J]. Mov Disord, 32, 487-497(2017).
[71] DERBIE A Y. Neural mechanisms of spatial coding : a multimodal imaging study[D](2021).
[72] DENG W, TSUBOTA K I. Numerical simulation of the vascular structure dependence of blood flow in the kidney[J]. Medical Engineering & Physics, 104, 103809(2022).
[73] KIM Y, LEE Y B, BAE S K et al. Development of a photochemical thrombosis investigation system to obtain a rabbit ischemic stroke model[J]. Scientific Reports, 11, 5787(2021).
[74] DRAIJER M, HONDEBRINK E, VAN LEEUWEN T et al. Review of laser speckle contrast techniques for visualizing tissue perfusion[J]. Lasers in Medical Science, 24, 639-651(2009).
[75] BOAS D A, DUNN A K. Laser speckle contrast imaging in biomedical optics[J]. Journal of Biomedical Optics, 15, 011109(2010).
[76] GUILBERT J, DESJARDINS M. Movement correction method for laser speckle contrast imaging of cerebral blood flow in cranial windows in rodents[J]. Journal of Biophotonics, 15, e202100218(2022).
[77] KHAODHIAR L, DINH T, SCHOMACKER K T et al. The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes[J]. Diabetes Care, 30, 903-910(2007).
[78] YUDOVSKY D, NOUVONG A, SCHOMACKER K et al. Monitoring temporal development and healing of diabetic foot ulceration using hyperspectral imaging[J]. Journal of Biophotonics, 4, 565-576(2011).
[79] RISAU W, WOLBURG H. Development of the blood-brain-barrier[J]. Trends in Neurosciences, 13, 174-178(1990).
[80] ABBOTT N J, ROMERO I A. Transporting therapeutics across the blood-brain barrier[J]. Molecular Medicine Today, 2, 106-113(1996).
[81] EL-BACHA R S, MINN A. Drug metabolizing enzymes in cerebrovascular endothelial cells afford a metabolic protection to the brain[J]. Molecular and Cellular Biology, 45, 15-23(1999).
[82] PARDRIDGE W M. Molecular Trojan horses for blood-brain barrier drug delivery[J]. Current Opinion in Pharmacology, 6, 494-500(2006).
[83] PATEL M M, PATEL B M. Crossing the blood-brain barrier: recent advances in drug delivery to the brain[J]. Cns Drugs, 31, 109-133(2017).
[84] MITRAGOTRI S. Devices for overcoming biological barriers: The use of physical forces to disrupt the barriers[J]. Advanced Drug Delivery Reviews, 65, 100-103(2013).
[85] HERSH D S, WADAJKAR A S, ROBERTS N B et al. Evolving drug delivery strategies to overcome the blood brain barrier[J]. Current Pharmaceutical Design, 22, 1177-1193(2016).
[86] KIVINIEMI V, KORHONEN V, KORTELAINEN J et al. Real-time monitoring of human blood-brain barrier disruption[J]. Plos One, 12, e0174072(2017).
[87] POON C, MCMAHON D, HYNYNEN K. Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound[J]. Neuropharmacology, 120, 20-37(2017).
[88] FISHMAN P S, FRENKEL V. Focused ultrasound: an emerging therapeutic modality for neurologic disease[J]. Neurotherapeutics, 14, 393-404(2017).
[89] DHURIA S V, HANSON L R, FREY W H. Intranasal delivery to the central nervous system: mechanisms and experimental considerations[J]. Journal of Pharmaceutical Sciences, 99, 1654-1673(2010).
[90] KARAISKOS I, GALANI L, BAZIAKA F et al. Intraventricular and intrathecal colistin as the last therapeutic resort for the treatment of multidrug-resistant and extensively drug-resistant Acinetobacter baumannii ventriculitis and meningitis: a literature review[J]. International Journal of Antimicrobial Agents, 41, 499-508(2013).
[91] HIRSCHBERG H, UZAL F A, CHIGHVINADZE D et al. Disruption of the blood-brain barrier following ALA-mediated photodynamic therapy[J]. Lasers Surg Med, 40, 535-542(2008).
[92] MADSEN S J, HIRSCHBERG H. Site-specific opening of the blood-brain barrier[J]. Journal of Biophotonics, 3, 356-367(2010).
[93] ZHANG Chao, FENG Wei, LI Yusha et al. Age differences in photodynamic therapy-mediated opening of the blood-brain barrier through the optical clearing skull window in mice[J]. Lasers in Surgery and Medicine, 51, 625-633(2019).
[94] BRANT D, WATSON W D D, BUSTO R et al. Induction of reproducible brain infarction by photochemically initiated thrombosis[J]. Annals of Neurology, 17, 497-504(1985).
[95] WATSON B D, PRADO R, VELOSO A et al. Cerebral blood flow restoration and reperfusion injury after ultraviolet laser-facilitated middle cerebral artery recanalization in rat thrombotic stroke[J]. Stroke, 33, 428-434(2002).
[96] BACIGALUPPI M, SEMERANO A, GULLOTTA G S et al. Insights from thrombi retrieved in stroke due to large vessel occlusion[J]. Journal of Cerebral Blood Flow and Metabolism, 39, 1433-1451(2019).
[97] MARDER V J, CHUTE D J, STARKMAN S et al. Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke[J]. Stroke, 37, 2086-2093(2006).
[98] SUN Y, Yimin KUO, CHEN Hongru et al. A murine photothrombotic stroke model with an increased fibrin content and improved responses to tPA-lytic treatment[J]. Blood Advances, 4, 1222-1231(2020).
[99] DAVALOS D, GRUTZENDLER J, YANG G et al. ATP mediates rapid microglial response to local brain injury
[100] NIMMERJAHN A, KIRCHHOFF F, HELMCHEN F. Resting microglial cells are highly dynamic surveillants of brain parenchyma
[101] LI Dongyu, HU Zhengwu, ZHANG Hequn et al. Solid optical clearing agents based through-Intact-Skull (TIS) window technique for long-term observation of cortical structure and function in mice[J]. bioRxiv(2021).
[102] QIU Jianrong, HAN Tao, LIU Zhiyu et al. Uniform focusing with an extended depth range and increased working distance for optical coherence tomography by an ultrathin monolith fiber probe[J]. Optics Letters, 45, 976-979(2020).
[103] YU Yao, MENG Ziyue, LI Ang et al. Monitoring of edema progression in permanent and transient MCAO model using SS-OCT[J]. Journal of Innovative Optical Health Sciences, 14, 2140006(2021).
[104] HAN Xinjia, CHAI Z, PING Xingjie et al.
[105] REN Huixia, YANG Zheng, LUO Chuanming et al. Enriched endogenous Omega-3 fatty acids in mice ameliorate parenchymal cell death after traumatic brain injury[J]. Molecular Neurobiology, 54, 3317-3326(2017).
[106] ROTH T L, NAYAK D, ATANASIJEVIC T et al. Transcranial amelioration of inflammation and cell death after brain injury[J]. Nature, 505, 223(2014).
[107] ZHANG Jinfan, LIU Bian, HONG I et al. An ultrasensitive biosensor for high-resolution kinase activity imaging in awake mice[J]. Nature Chemical Biology, 17, 39-46(2021).
[108] ZONG Weijian, WU Runlong, LI Mingli et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice[J]. Nature Methods, 14, 713-719(2017).
[109] FAN Jingtao, SUO Jinli, WU Jiamin et al. Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution[J]. Nature Photonics, 13, 809-816(2019).
[110] SMITH L G F, MILLIRON E, HO M L et al. Advanced neuroimaging in traumatic brain injury: an overview[J]. Neurosurgical Focus, 47, E17(2019).
[111] AZIM A, JOSEPH B[M]. Surgical critical care therapy: a clinically oriented practical approach(2018).
[112] QIN Zhongya, HE Sicong, YANG Chao et al. Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging
[113] STREICH L, BOFFI J C, WANG Ling et al. High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy[J]. Nature Methods, 18, 1253-1258(2021).
[114] WANG Kai. Deep-learning-enhanced light-field microscopy[J]. Nature Methods, 18, 459-460(2021).
Get Citation
Copy Citation Text
Dongyu LI, Tingting YU, Jingtan ZHU, Dan ZHU. In vivo Skull Optical Clearing Technique and its Applications(Invited)[J]. Acta Photonica Sinica, 2022, 51(8): 0851514
Category: Special Issue for the 60th Anniversary of XIOPM of CAS, and the 50th Anniversary of the Acta Photonica Sinica Ⅱ
Received: Jun. 6, 2022
Accepted: Jul. 25, 2022
Published Online: Oct. 25, 2022
The Author Email: Dan ZHU (dawnzh@mail.hust.edu.cn)