Chinese Journal of Lasers, Volume. 44, Issue 7, 703002(2017)

2D Materials and Quasi-2D Materials: Nonlinear Optical Properties and Corresponding Applications

Ma Zhijun1,2、*, Wei Rongfei1,2, Hu Zhongliang1,2, and Qiu Jianrong1,2,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(194)

    [1] [1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

    [2] [2] Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377.

    [3] [3] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.

    [4] [4] Meric I, Han M Y, Young A F, et al. Current saturation in zero-bandgap, topgated graphene field-effect transistors[J]. Nature Nanotechnolgy, 2008, 3(11): 654-659.

    [5] [5] Freitag M, Low T, Xia F N, et al. Photoconductivity of biased graphene[J]. Nature Photonics, 2013, 7(1): 53-59.

    [6] [6] Ju L, Geng B S, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology, 2011, 6(10): 630-634.

    [7] [7] Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6(11): 749-758.

    [8] [8] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712.

    [9] [9] Tian H, Chin M L, Najmaei S, et al. Optoelectronic devices based on two-dimensional transition metal dichalcogenides[J]. Nano Research, 2016, 9(6): 1543-1560.

    [10] [10] Pospischil A, Mueller T. Optoelectronic devices based on atomically thin transition metal dichalcogenides[J]. Applied Science, 2016, 6(3): 78.

    [11] [11] Liu J X, Cao H, Jiang B, et al. Newborn 2D materials for flexible energy conversion and storage[J]. Science China Materials, 2016, 59(6): 459-474.

    [12] [12] Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nature Photonics, 2016, 10(4): 216-226.

    [13] [13] Zhang Y, Chang T R, Zhou B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2[J]. Nature Nanotechnology, 2014, 9(2): 111-115.

    [14] [14] Peng B, Ang P K, Loh K P. Two-dimensional dichalcogenides for light-harvesting applications[J]. Nano Today, 2015, 10(2): 128-137.

    [15] [15] Cao T, Wang G, Han W P, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide[J]. Nature Communication, 2012, 3: 887.

    [16] [16] Wang H T, Yuan H T, Hong S S, et al. Physical and chemical tuning of two-dimensional transition metal dichalcogenides[J]. Chemical Society Reviews, 2015, 44(9): 2664-2680.

    [17] [17] Asahina H, Morita A. Band-structure and optical-properties of black phosphorus[J]. Journal of Physics C: Solid State Physics, 1984, 17(11): 1839-1852.

    [18] [18] Low T,Rodin A S, Carvalho A, et al. Tunable optical properties of multilayer black phosphorus thin films[J]. Physysical Review B, 2014, 90(7): 075434.

    [19] [19] Liang L B, Wang J, Lin W Z, et al. Electronic bandgap and edge reconstruction in phosphorene materials[J]. Nano Letters, 2014, 14(11): 6400-6406.

    [20] [20] Qiao J S, Kong X H, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communication, 2014, 5: 4475.

    [21] [21] Buscema M, Groenendijk D J, Blanter S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors[J]. Nano Letters, 2014, 14(6): 3347-3352.

    [22] [22] Youngblood N, Chen C, Koester S J, et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current[J]. Nature Photonics, 2015, 9(4): 247-252.

    [23] [23] Yuan H T, Liu X G, Afshinmanesh F, et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction[J]. Nature Nanotechnology, 2015, 10(8): 707-713.

    [24] [24] Rodin A S, Carvalho A, Castro Neto A H. Strain-induced gap modification in black phosphorus[J]. Physical Review Letters, 2014, 112(17): 176801.

    [25] [25] Xia F N, Wang H, Jia Y C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics[J]. Nature Communication, 2014, 5: 4458.

    [26] [26] Hui F, Pan C B, Shi Y Y, et al. On the use of two dimensional hexagonal boron nitride as dielectric[J]. Microelectronic Engineering, 2016, 163: 119-133.

    [27] [27] Wang L F, Wu B, Chen J S, et al. Monolayer hexagonal boron nitride films with large domain size and clean interface for enhancing the mobility of graphene-based field-effect transistors[J]. Advanced Materials, 2014, 26(10): 1559-1564.

    [28] [28] Song L, Ci L J, Lu H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers[J]. Nano Letters, 2010, 10(8): 3209-3215.

    [29] [29] Appelbaum I, Drew H D, Fuhrer M S. Proposal for a topological plasmon spin rectifier[J]. Applied Physics Letters, 2011, 98(2): 023103.

    [30] [30] Wunderlich J, Park B G, Irvine A C, et al. Spin hall effect transistor[J]. Science, 2010, 330(6012): 1801-1804.

    [31] [31] Hasan M Z, Kane C L. Colloquium: topological insulators[J]. Reviews of Modern Physics, 2010, 82(4): 3045-3067.

    [32] [32] Li P X, Zhang G J, Zhang H, et al. Q-switched mode-locked Nd∶YVO4 laser by topological insulator Bi2Te3 saturable absorber[J]. IEEE Photonics Technology Letters, 2014, 26(19): 1912-1915.

    [33] [33] Sotor J, Sobon G, Macherzynski W, et al. Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber[J]. Laser Physics Letters, 2014, 11(5): 055102.

    [34] [34] Wong S L, Liu H F, Chi D Z. Recent progress in chemical vapor deposition growth of two-dimensional transition metal dichalcogenides[J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(3): 9-28.

    [35] [35] Yan K, Fu L, Peng H L, et al. Designed CVD growth of graphene via process engineering[J]. Accounts of Chemical Research, 2013, 46(10): 2263-2274.

    [36] [36] Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials[J]. Science, 2013, 340(6139): 1420.

    [37] [37] Han J H, Lee S, Cheon J. Synthesis and structural transformations of colloidal 2D layered metal chalcogenide nanocrystals[J]. Chemical Society Reviews, 2013, 42(7): 2581-2591.

    [38] [38] Li H, Lu G, Wang Y L, et al. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2[J]. Small, 2013, 9(11): 1974-1981.

    [39] [39] Castellanos-Gomez A, Vicarelli L, Prada E, et al. Isolation and characterization of few-layer black phosphorus[J]. 2D Materials, 2014, 1(2): 025001.

    [40] [40] Hong S S, Kundhikanjana W, Cha J J, et al. Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy[J]. Nano Letters, 2010, 10(8): 3118-3122.

    [41] [41] Li L H, Chen Y, Behan G, et al. Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling[J]. Journal of Materials Chemistry, 2011, 21(32): 11862-11866.

    [42] [42] Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240.

    [43] [43] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9): 563-568.

    [44] [44] Hughes J M, Aherne D, Coleman J N. Generalizing solubility parameter theory to apply to one- and two-dimensional solutes and to incorporate dipolar interactions[J]. Journal of Applied Polymer Science, 2013, 127(6): 4483-4491.

    [45] [45] Hernandez Y, Lotya M, Rickard D, et al. Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery[J]. Langmuir, 2010, 26(5): 3208-3213.

    [46] [46] O′Neill A, Khan U, Nirmalraj P N, et al. Graphene dispersion and exfoliation in low boiling point solvents[J]. The Journal of Physical Chemisty C, 2011, 115(13): 5422-5428.

    [47] [47] Bourlinos A B, Georgakilas V, Zboril R, et al. Liquid-phase exfoliation of graphite towards solubilized graphenes[J]. Small, 2009, 5(16): 1841-1845.

    [48] [48] Khan U, O′Neill A, Lotya M, et al. High-concentration solvent exfoliation of graphene[J]. Small, 2010, 6(7): 864-871.

    [49] [49] Magda G Z, Peto J, Dobrik G, et al. Exfoliation of large-area transition metal chalcogenide single layers[J]. Scientific Reports, 2015, 5: 14714.

    [50] [50] Zheng J, Zhang H, Dong S H, et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide[J]. Nature Communication, 2014, 5: 2995.

    [51] [51] Cunningham G, Lotya M, Cucinotta C S, et al. Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds[J]. ACS Nano, 2012, 6(4): 3468-3480.

    [52] [52] Smith R J, King P J, Lotya M, et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions[J]. Advanced Materials, 2011, 23(34): 3944-3948.

    [53] [53] Hanlon D, Backes C, Doherty E, et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics[J]. Nature Communication, 2015, 6: 8563.

    [54] [54] Brent J R, Savjani N, Lewis E A, et al. Production of few-layer phosphorene by liquid exfoliation of black phosphorus[J]. Chemical Communications, 2014, 50(87): 13338-13341.

    [55] [55] Kang J, Wood J D, Wells S A, et al. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus[J]. ACS Nano, 2015, 9(4): 3596-3604.

    [56] [56] Ren Long, Liu Yundan, Hao Guolin. Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route[J]. Journal of Materials Chemistry, 2012, 22(11): 4921-4926.

    [57] [57] Warner J H, Rummeli M H, Bachmatiuk A, et al. Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation[J]. ACS Nano, 2010, 4(3): 1299-1304.

    [58] [58] Li X L, Hao X P, Zhao M W, et al. Exfoliation of hexagonal boron nitride by molten hydroxides[J]. Advanced Materials, 2013, 25(15): 2200-2204.

    [59] [59] Lin Y, Williams T V, Connell J W. Soluble, exfoliated hexagonal boron nitride nanosheets[J]. The Journal of Physical Chemistry Letters, 2010, 1(1): 277-283.

    [60] [60] Jang J T, Jeong S, Seo J W, et al. Ultrathin zirconium disulfide nanodiscs[J]. Journal of the American Chemical Society, 2011, 133(20): 7636-7639.

    [61] [61] Seo J W, Jun Y W, Park S W, et al. Two-dimensional nanosheet crystals[J]. Angewandte Chemie International Edition, 2007, 46(46): 8828-8831.

    [62] [62] Gao M R, Cao X, Gao Q, et al. Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation[J]. ACS Nano, 2014, 8(4): 3970-3978.

    [63] [63] Altavilla C, Sarno M, Ciambelli P. A novel wet chemistry approach for the synthesis of hybrid 2D free-floating single or multilayer nanosheets of MS2@oleylamine (M=Mo,W)[J]. Chemistry of Materials, 2011, 23(17): 3879-3885.

    [64] [64] Jeong S, Yoo D, Jang J T, et al. Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols[J]. Journal of the American Chemical Society, 2012, 134(44): 18233-18236.

    [65] [65] Yoo D, Kim M, Jeong S, et al. Chemical synthetic strategy for single-layer transition-metal chalcogenides[J]. Journal of the American Chemical Society, 2014, 136(42): 14670-14673.

    [66] [66] Obraztsov A N. Chemical vapour deposition making graphene on a large scale[J]. Nature Nanotechnology, 2009, 4(4): 212-213.

    [67] [67] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706-710.

    [68] [68] Niu T C, Zhou M, Zhang J L, et al. Growth intermediates for CVD graphene on Cu(111): carbon clusters and defective graphene[J]. Journal of the American Chemical Society, 2013, 135(22): 8409-8414.

    [69] [69] Tang S J, Wang H M, Wang H S, et al. Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride[J]. Nature Communication, 2015, 6: 6499.

    [70] [70] Shi Y M, Hamsen C, Jia X T, et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition[J]. Nano Letters, 2010, 10(10): 4134-4139.

    [71] [71] Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology, 2010, 5(8): 574-578.

    [72] [72] Yu Q K, Jauregui L A, Wu W, et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 443-449.

    [73] [73] Liang T, He G, Huang G, et al. Graphene nucleation preferentially at oxygen-rich Cu sites rather than on pure Cu surface[J]. Advanced Materials, 2015, 27: 6404-6410.

    [74] [74] Hao Y, Wang L, Liu Y, et al. Oxygen-activated growth and bandgap tenability of large single-crystal bilayer graphene[J]. Nature Nanotechnology, 2016, 11: 426-431.

    [75] [75] Liang T, Luan C, Chen H, et al. Exploring oxygen in graphene chemical vapor deposition synthesis[J]. Nanoscale, 2017, 9(11): 3719-3735.

    [76] [76] Zhang Y, Zhang Y F, Ji Q Q, et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary[J]. ACS Nano, 2013, 7(10): 8963-8971.

    [77] [77] Shi Y M, Zhou W, Lu A Y, et al. Van der Waals epitaxy of MoS2 layers using graphene as growth templates[J]. Nano Letters, 2012, 12(6): 2784-2791.

    [78] [78] Cong C X, Shang J Z, Wu X, et al. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition[J]. Advanced Optical Materials, 2014, 2(2): 131-136.

    [79] [79] Piper W W, Polich S J. Vapor-phase growth of single crystals of II-VI compounds[J]. Journal of Applied Physics, 1961, 32(7): 1278-1279.

    [80] [80] Li H, Cao J, Zheng W S, et al. Controlled synthesis of topological insulator nanoplate arrays on mica[J]. Journal of the American Chemical Society, 2012, 134(14): 6132-6135.

    [81] [81] Sun Z H, Chang H X. Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology[J]. ACS Nano, 2014, 8(5): 4133-4156.

    [82] [82] Kong D S, Dang W H, Cha J J, et al. Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential[J]. Nano Letters, 2010, 10(6): 2245-2250.

    [83] [83] Kim K K, Hsu A, Jia X T, et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition[J]. Nano Letters, 2012, 12(1): 161-166.

    [84] [84] Sutter P, Lahiri J, Albrecht P, et al. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films[J]. ACS Nano, 2011, 5(9): 7303-7309.

    [85] [85] Lee K H, Shin H J, Lee J, et al. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics[J]. Nano Letters, 2012, 12(2): 714-718.

    [86] [86] Ohuchi F S, Parkinson B A, Ueno K, et al. Vanderwaals epitaxial-growth and characterization of MoSe2 thin-films on SnS2[J]. Journal of Applied Physics, 1990, 68(5): 2168-2175.

    [87] [87] Ueno K, Saiki K, Shimada T, et al. Epitaxial-growth of transition-metal dichalcogenides on cleaved faces of mica[J]. Journal of Vacuum Science and Technology A: Vacuum, Surface, and Films, 1990, 8(1): 68-72.

    [88] [88] Lin Y C, Chang C Y S, Ghosh R K, et al. Atomically thin heterostructures based on single-layer tungsten diselenide and graphene[J]. Nano Letters, 2014, 14(12): 6936-6941.

    [89] [89] Yang W, Chen G R, Shi Z W, et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride[J]. Nature Materials, 2013, 12(9): 792-797.

    [90] [90] Yan A M, Velasco J, Kahn S, et al. Direct growth of single- and few-layer MoS2 on h-BN with preferred relative rotation angles[J]. Nano Letters, 2015, 15(10): 6324-6331.

    [91] [91] Azizi A, Eichfeld S, Geschwind G, et al. Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides[J]. ACS Nano, 2015, 9(5): 4882-4890.

    [92] [92] Liu X L, Balla I, Bergeron H, et al. Rotationally commensurate growth of MoS2 on epitaxial graphene[J]. ACS Nano, 2016, 10(1): 1067-1075.

    [93] [93] Listed N. The rise and rise of graphene[J]. Nature Nanotechnology, 2010, 5(11): 755.

    [94] [94] Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-162.

    [95] [95] Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum hall effect and Berry′s phase in graphene[J]. Nature, 2005, 438(7065): 201-204.

    [96] [96] Rangel N L, Seminario J M. Vibronics and plasmonics based graphene sensors[J]. The Journal of Chemical Physics, 2010, 132(12): 03B611.

    [97] [97] Banerjee S K, Register L F, Tutuc E, et al. Graphene for CMOS and beyond CMOS applications[J]. Proceedings of the IEEE, 2010, 98(12): 2032-2046.

    [98] [98] Schwierz F. Graphene transistors[J]. Nature Nanotechnology, 2010, 5(7): 487-496.

    [99] [99] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622.

    [100] [100] Qin Xinmao, Xie Zhuocheng, Xie Quan. Research progress on the modification of graphene[J]. Electronic Components and Materials, 2014, 33(3): 1-4.

    [101] [101] Zhang H J, Liu C X, Qi X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 2009, 5(6): 438-442.

    [102] [102] Xu M S, Liang T, Shi M M, et al. Graphene-like two-dimensional materials[J]. Chemical Reviews, 2013, 113(5): 3766-3798.

    [103] [103] Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Letters, 2012, 12(1): 526-526.

    [104] [104] Liu L T, Kumar S B, Ouyang Y, et al. Performance limits of monolayer transition metal dichalcogenide transistors[J]. IEEE Transactions on Electron Devices, 2011, 58(9): 3042-3047.

    [105] [105] Chang K, Chen W. L-cysteine-assisted synthesis of layered MoS2/grapheme composites with excellent electrochemical performance for lithium ion batteriesl[J]. ACS Nano, 2011, 5(6): 4720-4728.

    [106] [106] Xie J F, Zhang H, Li S, et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution[J]. Advanced Materials, 2013, 25(40): 5807-5813.

    [107] [107] Koenig S P, Doganov R A, Schmidt H, et al. Electric field effect in ultrathin black phosphorus[J]. Applied Physics Letters, 2014, 104(10): 103106.

    [108] [108] Liu H, Du Y C, Deng Y X, et al. Semiconducting black phosphorus: synthesis, transport properties and electronic applications[J]. Chemical Society Reviews, 2015, 44(9): 2732-2743.

    [110] [110] Wang J, Hernandez Y, Lotya M, et al. Broadband nonlinear optical response of graphene dispersions[J]. Advanced Materials, 2009, 21(23): 2430-2435.

    [111] [111] Bao Q L, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.

    [112] [112] Yu H H, Chen X F, Zhang H J, et al. Large energy pulse generation modulated by graphene bpitaxially grown on silicon carbide[J]. ACS Nano, 2010, 4(12): 7582-7586.

    [113] [113] Zhang H, Tang D Y, Knize R J, et al. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser[J]. Applied Physics Letters, 2010, 96(11): 111112.

    [114] [114] Ma J, Xie G Q, Lv P, et al. Graphene mode-locked femtosecond laser at 2 μm wavelength[J]. Optics Letters, 2012, 37(11): 2085-2087.

    [115] [115] Obraztsova E D, Tausenev A V. Graphene for laser applications[EB/OL].[2017-02-13]. https://www.researchgate.net/publication/267783284_Graphene_for_laser_applications.

    [116] [116] Zheng Z W, Zhao C J, Lu S B, et al. Microwave and optical saturable absorption in graphene[J]. Optics Express, 2012, 20(21): 23201-23214.

    [117] [117] Hendry E, Hale P J, Moger J, et al. Coherent nonlinear optical response of graphene[J]. Physical Review Letters, 2010, 105(9): 097401.

    [118] [118] Krishna M B M, Kumar V P, Venkatramaiah N, et al. Nonlinear optical properties of covalently linked graphene-metal porphyrin composite materials[J]. Applied Physics Letters, 2011, 98(8): 081106.

    [119] [119] Chen W, Wang G, Qin S Q, et al. The nonlinear optical properties of coupling and decoupling graphene layers[J]. AIP Advances, 2013, 3(4): 042123.

    [120] [120] Zhang Y, Liu, T, Meng B,et al. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Natcommun, 2013, 4: 1811-1821.

    [121] [121] Li X, Wu K, Sun Z, et al. Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers[J]. Scientific Reports, 2016, 6: 25266-25274.

    [122] [122] Li X, Yu X, Sun Z, et al. High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction[J]. Scientific Reports, 2015, 5: 16624-16631.

    [123] [123] Li X, Tang Y, Yan Z, et al. Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 1101107.

    [124] [124] Bernard F Z H, Gorza S P. Towards mode-locked fiber laser using topological insulators[C]. Optical Society of America, 2012: NIh 1A.5.

    [125] [125] Zhao C J, Zou Y H, Chen Y. Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker[J]. Optics Express, 2012, 20(25): 27888-27895.

    [126] [126] Zhao C J, Zhang H, Qi X, et al. Ultra-short pulse generation by a topological insulator based saturable absorber[J]. Applied Physics Letters, 2012, 101: 211106.

    [127] [127] Lu S B, Zhao C J, Zou Y H, et al. Third order nonlinear optical property of Bi2Se3[J]. Optics Express, 2013, 21(2): 2072-2082.

    [128] [128] Tang P H, Zhang X Q, Zhao C J, et al. Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er∶YAG ceramiclaser[J]. IEEE Photonics Journal, 2013, 5(2): 1500707.

    [129] [129] Luo Z Q, Liu C, Huang Y Z, et al. Topological-insulator passively Q-switched double-clad fiber laser at 2 μm wavelength[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 1-8.

    [130] [130] Jung M, Lee J, Koo J, et al. A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator[J]. Optics Express, 2014, 22(7): 7865-7874.

    [131] [131] He X, Zhang H, Lin W, et al. PVP-assisted solvothermal synthesis of high-yielded Bi2Te3 hexagonal nanoplates: application in passively Q-switched fiber laser[J]. Scientific Reports, 2015, 5: 15868.

    [132] [132] Zhang H, He X, Lin W, et al. Ultrafast saturable absorption in topological insulator Bi2SeTe2 nanosheets[J]. Optics Express, 2015, 23(10): 13376-13383.

    [133] [133] Wang K P, Wang J, Fan J T, et al. Ultrafast saturable absorption of two-dimensional MoS2 Nanosheets[J]. ACS Nano, 2013, 7(10): 9260-9267.

    [134] [134] Zhang X Y, Zhang, S, F, Chang C X, et al. Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance[J]. Nanoscale, 2015, 7(7): 2978-2986.

    [135] [135] Wang K P, Feng Y Y, Chang C X, et al. Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors[J]. Nanoscale, 2014, 6(18): 10530-10535.

    [136] [136] Duan S S, Yang K, Wang Z H, et al. Fabrication of highly stretchable conductors based on 3D printed porous poly (dimethylsiloxane) and conductive carbon nanotubes/graphene Network[J]. ACS Applied Materials and Interfaces, 2016, 8(3): 2187-2192.

    [137] [137] Zhang H, Lu S B, Zheng J, et al. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics[J]. Optics Express, 2014, 22(6): 7249-7260.

    [138] [138] Zhou K G, Zhao M, Chang M J, et al. Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets[J]. Small, 2015, 11(6): 694-701.

    [139] [139] Ouyang Q Y, Yu H L, Zhang K, et al. Saturable absorption and the changeover from saturable absorption to reverse saturable absorption of MoS2 nanoflake array films[J]. Journal of Materials Chemistry C, 2014, 2(31): 6319-6325.

    [140] [140] Mao D, Wang Y D, Ma C J, et al. WS2 mode-locked ultrafast fiber laser[J]. Scientific Reports, 2015, 5: 7965.

    [141] [141] Wei R F, Zhang H, Hu Z L, et al. Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets[J]. Nanotechnology, 2016, 27(30): 305203.

    [142] [142] Wei R F, Zhang H, Tian X L, et al. MoS2 nanoflowers as high performance saturable absorbers for an all-fiber passively Q-switched erbium-doped fiber laser[J]. Nanoscale, 2016, 8(14): 7704-7710.

    [143] [143] Wei R F, Zhang H, He X, et al. Versatile preparation of ultrathin MoS2 nanosheets with reverse saturable absorption response[J]. Optics Materials Express, 2015, 5(8): 1807-1814.

    [144] [144] Lu S B, Miao L L, Guo Z N, et al. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material[J]. Optics Express, 2015, 23(9): 11183-11194.

    [145] [145] Chen Y, Jiang G B, Chen S Q, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J]. Optics Express, 2015, 23(10): 12823-12833.

    [146] [146] Xu Y H, Wang Z T, Guo Z N, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots[J]. Advanced Optical Materials, 2016, 4(8): 1223-1229.

    [147] [147] Sotor J, Sobon G, Kowalczyk M, et al. Ultrafast thulium-doped fiber laser mode locked with black phosphorus[J]. Optics Letters, 2015, 40(16): 3885-3888.

    [148] [148] Zhang B T, Lou F, Zhao R W, et al. Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser[J]. Optics Letters, 2015, 40(16): 3691-3694.

    [149] [149] Qin Z P, Xie G Q, Zhang H, et al. Black phosphorus as saturable absorber for the Q-switched Er∶ZBLAN fiber laser at 2.8 μm[J]. Optics Express, 2015, 23(19): 24713-24718.

    [150] [150] Yu H, Zheng X, Yin K, et al. Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets[J]. Optical Materials Express, 2016, 6(2): 603-609.

    [151] [151] Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 2009, 459(7245): 410-413.

    [152] [152] Tan D Z, Yamada Y, Zhou S F, et al. Carbon nanodots with strong nonlinear optical response[J]. Carbon, 2014, 69: 638-640.

    [153] [153] Gieseking R L, Mukhopadhyay S, Risko C, et al. Impact of the nature of the excited-state transition dipole moments on the third-order nonlinear optical response of polymethine dyes for all-optical switching applications[J]. ACS Photonics, 2014, 1(3): 261-269.

    [154] [154] Maier S A. Plasmonics: fundamental and applications[M]. Berlin: Springer Science and Business Media, 2007.

    [155] [155] Li Z Y, Li J F. Recent progress in engineering and application of surface plasmon resonance in metal nanostructures[J]. Chinese Science Bull, 2011, 56: 2631-2661.

    [156] [156] Ricard D, Roussignol P, Flytzanis C. Surface-mediated enhancement of optical-phase conjugation in metal colloids[J]. Optics Letters, 1985, 10(10): 511-513.

    [157] [157] Tanahashi I, Manabe Y, Tohda T, et al. Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method[J]. Journal of Applied Physics, 1996, 79(3): 1244-1249.

    [158] [158] Liao H B, Xiao R F, Wang H, et al. Large third-order optical nonlinearity in Au∶TiO2 composite films measured on a femtosecond time scale[J]. Applied Physics Letters, 1998, 72(15): 1817-1819.

    [159] [159] Ballesteros J M, Serna R, Solis J, et al. Pulsed laser deposition of Cu∶Al2O3 nanocrystal thin films with high third-order optical susceptibility[J]. Applied Physics Letters, 1997, 71(17): 2445-2447.

    [160] [160] Karthikeyan B, Anija M, Philip R. In situ synthesis and nonlinear optical properties of Au∶Ag nanocomposite polymer films[J]. Applied Physics Letters, 2006, 88(5): 053104.

    [161] [161] Porel S, Singh S, Harsha S S, et al. Nanoparticle-embedded polymer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting[J]. Chemistry of Materials, 2005, 17(1): 9-12.

    [162] [162] Yang G C, Chen Z H. Large optical nonliearities in Ag-doped BaTiO3 nanocomposite films[J]. Acta Physical Sinica, 2007, 56(2): 1182-1187.

    [163] [163] Wang K, Long H, Fu M, et al. Size-related third-order optical nonlinearities of Au nanoparticle arrays[J]. Optics Express, 2010, 18(13): 13874-13879.

    [164] [164] Fan D F, Mou C B, Bai X K, et al. Passively Q-switched erbium-doped fiber laser using evanescent field interaction with gold-nanosphere based saturable absorber[J]. Optics Express, 2014, 22(15): 18537-18542.

    [165] [165] Jiang T, Xu Y, Tian Q J, et al. Passively Q-switching induced by gold nanocrystals[J]. Applied Physics Letters, 2012, 101(15): 151122.

    [166] [166] Slocik J M, Stone M O, Naik R R. Synthesis of gold nanoparticles using multifunctional peptides[J]. Small, 2005, 1(11): 1048-1052.

    [167] [167] Yan Ya, Li Jinru, Yang Yun. Synthesis of spherical monodisperse gold nanoparticles[J]. Progress in Chemistry, 2009, 21(5): 971-981.

    [168] [168] Brioude A, Jiang X C, Pileni M P. Optical properties of gold nanorods: DDA simulations supported by experiments[J]. The Journal of Physical Chemistry B, 2005, 109(27): 13138-13142.

    [169] [169] Wu H Y, Huang W L, Huang M H. Direct high-yield synthesis of high aspect ratio gold nanorods[J]. Crystal Growth and Design, 2007, 7(4): 831-835.

    [170] [170] De Boni L, Wood E L, Toro C, et al. Optical saturable absorption in gold nanoparticles[J]. Plasmonics, 2008, 3(4): 171-176.

    [171] [171] Li J F, Liu S Y, Liu Y, et al. Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods[J]. Applied Physics Letters, 2010, 96(26): 263103.

    [172] [172] Olesiak-Banska J, Gordel M, Kolkowski R, et al. Third-order nonlinear optical properties of colloidal gold nanorods[J]. The Journal of Physical Chemisty C, 2012, 116(25): 13731-13737.

    [173] [173] Jiao Y, Sun X Q, Wang Z R, et al. Nonlinear optical properties and applications of noble metal nanoparticles and nanocomposites[J]. Materials Reviews, 2006, 20(Z1): 188-192.

    [174] [174] Elim H I, Yang J, Lee J Y, et al. Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods[J]. Applied Physics Letters, 2006, 88(8): 083107.

    [175] [175] Wang K, Long H, Fu M, et al. Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array[J]. Optics Letters, 2010, 35(10): 1560-1562.

    [176] [176] Lamarre J M, Billard F, Kerboua C H, et al. Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix[J]. Optics Communications, 2008, 281(2): 331-340.

    [177] [177] Tao J, Lu Y H, Chen J X, et al. Polarization-dependent surface-enhanced Raman scattering via aligned gold nanorods in poly (vinyl alcohol) film[J]. Plasmonics, 2011, 6(4): 785-789.

    [178] [178] Kang Z, Xu Y, Zhang L, et al. Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers[J]. Applied Physics Letters, 2013, 103(4): 041105.

    [179] [179] Kang Z, Guo X Y, Jia Z X, et al. Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser[J]. Optical Materials Express, 2013, 3(11): 1986-1991.

    [180] [180] Kang Z, Gao X J, Zhang L, et al. Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber[J]. Optical Materials Express, 2015, 5(4): 794-801.

    [181] [181] Koo J, Lee J, Shin W, et al. All-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber[J]. Optical Materials Express, 2015, 5(8): 1859-1867.

    [182] [182] Wang X , Luo Z C, Liu H, et al. Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser[J]. Applied Physics Letters, 2014: 105(16): 161107.

    [183] [183] Zhang H, Hu Z L, Ma Z J. Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film[J]. ACS Applied Materials and Interface, 2016, 8(3): 2048-2053.

    [184] [184] Cao W, Song X M, Wang B, et al. Research progress in carbon nanotube[J]. Materials Reviews, 2007, 21(Special Ⅷ): 77-82.

    [185] [185] Yamashita S, Set S Y, Goh C S, et al. Ultrafast saturable absorbers based on carbon nanotubes and their applications to passively mode-locked fiber lasers[J]. Electronics and Communications in Japan, 2007, 90(2): 17-24.

    [186] [186] Tausenev A V, Obraztsova E D, Lobach A S, et al. 177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes[J]. Applied Physics Letters, 2008, 92(17): 171113.

    [187] [187] Mou C B, Rozhin A G, Arif R, et al. Polarization insensitive in-fiber mode-locker based on carbon nanotube with N-methyl-2-pryrrolidone solvent filled fiber microchamber[J]. Applied Physics Letters, 2012, 100(10): 101110.

    [188] [188] Bindra K S, Oak S M, Rustagi K C. Degenerate four-wave mixing in semiconductor-doped glasses below the absorption edge[J]. Phys Rev B, 1999, 59(4): 2968-2974.

    [189] [189] Prasanth R, Haverkort J E M, Deepthy A, et al. All-optical switching due to state filling in quantum dots[J]. Applied Physics Letters, 2004, 84(20): 4059-4061.

    [190] [190] Arnold C, Loo V, Lemaitre A, et al. Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000[J]. Applied Physics Letters, 2012: 100(11): 111111.

    [191] [191] Xing G C, Ji W, Zheng Y G, et al. Two- and three-photon absorption of semiconductor quantum dots in the vicinity of half of lowest exciton energy[J]. Applied Physics Letters, 2008, 93(24): 241114.

    [192] [192] Papagiannouli I, Maratou E, Koutselas I, et al. Synthesis and characterization of the nonlinear optical properties of novel hybrid organic-inorganic semiconductor lead iodide quantum wells and dots[J]. The Journal of Physical Chemisty C, 2014, 118(5): 2766-2775.

    [193] [193] Du K, Zhang J H, Wang F, et al. Progress in preparation and nonlinear optical properties of Ⅱ-Ⅵ semiconductor quantum dots[J]. Materials Review, 2013, 27(17): 38-42.

    [194] [194] Guo Q B, Ji M X, Yao Y H, et al. Cu-Sn-S plasmonic semiconductor nanocrystals for ultrafast photonics[J]. Nanoscale, 2016, 8(43): 18277-18281.

    [195] [195] Guo Q B, Yao Y H, Luo Z C, et al. Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals[J]. ACS Nano, 2016, 10(10): 9463-9469.

    Tools

    Get Citation

    Copy Citation Text

    Ma Zhijun, Wei Rongfei, Hu Zhongliang, Qiu Jianrong. 2D Materials and Quasi-2D Materials: Nonlinear Optical Properties and Corresponding Applications[J]. Chinese Journal of Lasers, 2017, 44(7): 703002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Feb. 13, 2017

    Accepted: --

    Published Online: Jul. 5, 2017

    The Author Email: Ma Zhijun (zhijma@scut.edu.cn)

    DOI:10.3788/cjl201744.0703002

    Topics