Photonics Research, Volume. 9, Issue 5, 887(2021)

Quantifying quantum coherence of optical cat states

Miao Zhang1、†, Haijun Kang1、†, Meihong Wang1,2, Fengyi Xu1, Xiaolong Su1,2、*, and Kunchi Peng1,2
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • show less
    References(55)

    [1] T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, S. Glancy. Quantum computation with optical coherent states. Phys. Rev. A, 68, 042319(2003).

    [2] H. Jeong, M. S. Kim. Efficient quantum computation using coherent states. Phys. Rev. A, 65, 042305(2002).

    [3] A. P. Lund, T. C. Ralph, H. L. Haselgrove. Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett., 100, 030503(2008).

    [4] S. L. Braunstein, H. J. Kimble. Teleportation of continuous quantum variables. Phys. Rev. Lett., 80, 869-872(1998).

    [5] S. J. van Enk, O. Hirota. Entangled coherent states: teleportation and decoherence. Phys. Rev. A, 64, 022313(2001).

    [6] P. van Loock, N. Lütkenhaus, W. J. Munro, K. Nemoto. Quantum repeaters using coherent-state communication. Phys. Rev. A, 78, 062319(2008).

    [7] A. Gilchrist, K. Nemoto, W. J. Munro, T. C. Ralph, S. Glancy, S. L. Braunstein, G. J. Milburn. Schrödinger cats and their power for quantum information processing. J. Opt. B, 6, S828-S833(2004).

    [8] M. Dakna, T. Anhut, T. Opatrný, L. Knöll, D.-G. Welsch. Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter. Phys. Rev. A, 55, 3184-3194(1997).

    [9] A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, P. Grangier. Generating optical Schrödinger kittens for quantum information processing. Science, 312, 83-86(2006).

    [10] J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, E. S. Polzik. Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett., 97, 083604(2006).

    [11] K. Wakui, H. Takahashi, A. Furusawa, M. Sasaki. Photon subtracted squeezed states generated with periodically poled KTiOPO4. Opt. Express, 15, 3568-3574(2007).

    [12] W. Asavanant, K. Nakashima, Y. Shiozawa, J.-I. Yoshikawa, A. Furusawa. Generation of highly pure Schrödinger’s cat states and real-time quadrature measurements via optical filtering. Opt. Express, 25, 32227-32242(2017).

    [13] T. Serikawa, J.-I. Yoshikawa, S. Takeda, H. Yonezawa, T. C. Ralph, E. H. Huntington, A. Furusawa. Generation of a cat state in an optical sideband. Phys. Rev. Lett., 121, 143602(2018).

    [14] H. Takahashi, K. Wakui, S. Suzuki, M. Takeoka, K. Hayasaka, A. Furusawa, M. Sasaki. Generation of large-amplitude coherent-state superposition via ancilla-assisted photon subtraction. Phys. Rev. Lett., 101, 233605(2008).

    [15] T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, E. Knill. Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum. Phys. Rev. A, 82, 031802(2010).

    [16] A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, P. Grangier. Generation of optical ‘Schrödinger cats’ from photon number states. Nature, 448, 784-786(2007).

    [17] J. Etesse, M. Bouillard, B. Kanseri, R. Tualle-Brouri. Experimental generation of squeezed cat states with an operation allowing iterative growth. Phys. Rev. Lett., 114, 193602(2015).

    [18] K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E. Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, J. Laurat. Optical synthesis of large-amplitude squeezed coherent-state superpositions with minimal resources. Phys. Rev. Lett., 115, 023602(2015).

    [19] N. Lee, H. Benichi, Y. Takeno, S. Takeda, J. Webb, E. Huntington, A. Furusawa. Teleportation of nonclassical wave packets of light. Science, 332, 330-333(2011).

    [20] J. S. Neergaard-Nielsen, Y. Eto, C.-W. Lee, H. Jeong, M. Sasaki. Quantum tele-amplification with a continuous-variable superposition state. Nat. Photonics, 7, 439-443(2013).

    [21] H. Jeong, A. Zavatta, M. Kang, S.-W. Lee, L. S. Costanzo, S. Grandi, T. C. Ralph, M. Bellini. Generation of hybrid entanglement of light. Nat. Photonics, 8, 564-569(2014).

    [22] O. Morin, K. Huang, J. Liu, H. L. Jeannic, C. Fabre, J. Laurat. Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nat. Photonics, 8, 570-574(2014).

    [23] A. E. Ulanov, D. Sychev, A. A. Pushkina, I. A. Fedorov, A. I. Lvovsky. Quantum teleportation between discrete and continuous encodings of an optical qubit. Phys. Rev. Lett., 118, 160501(2017).

    [24] D. V. Sychev, A. E. Ulanov, E. S. Tiunov, A. A. Pushkina, A. Kuzhamuratov, V. Novikov, A. I. Lvovsky. Entanglement and teleportation between polarization and wave-like encodings of an optical qubit. Nat. Commun., 9, 3672(2018).

    [25] D. V. Sychev, A. E. Ulanov, A. A. Pushkina, M. W. Richards, I. A. Fedorow, A. I. Lvovsky. Enlargement of optical Schrödinger’s cat states. Nat. Photonics, 11, 379-382(2017).

    [26] A. Tipsmark, R. Dong, A. Laghaout, P. Marek, M. Ježek, U. L. Andersen. Experimental demonstration of a Hadamard gate for coherent state qubits. Phys. Rev. A, 84, 050301(2011).

    [27] A. Streltsov, G. Adesso, M. B. Plenio. Colloquium: quantum coherence as a resource. Rev. Mod. Phys., 89, 041003(2017).

    [28] T. Baumgratz, M. Cramer, M. B. Plenio. Quantifying coherence. Phys. Rev. Lett., 113, 140401(2014).

    [29] D. Girolami. Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett., 113, 170401(2014).

    [30] J. Xu. Quantifying coherence of Gaussian states. Phys. Rev. A, 93, 032111(2016).

    [31] Y.-R. Zhang, L.-H. Shao, Y. Li, H. Fan. Quantifying coherence in infinite-dimensional systems. Phys. Rev. A, 93, 012334(2016).

    [32] A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, G. Adesso. Measuring quantum coherence with entanglement. Phys. Rev. Lett., 115, 020403(2015).

    [33] K. C. Tan, H. Jeong. Entanglement as the symmetric portion of correlated coherence. Phys. Rev. Lett., 121, 220401(2018).

    [34] K. Bu, N. Anand, U. Singh. Asymmetry and coherence weight of quantum states. Phys. Rev. A, 97, 032342(2018).

    [35] M. Lostaglio, M. P. Müller. Coherence and asymmetry cannot be broadcast. Phys. Rev. Lett., 123, 020403(2019).

    [36] E. Bagan, J. A. Bergou, S. S. Cottrell, M. Hillery. Relations between coherence and path information. Phys. Rev. Lett., 116, 160406(2016).

    [37] K.-D. Wu, Z. Hou, H.-S. Zhong, Y. Yuan, G.-Y. Xiang, C.-F. Li, G.-C. Guo. Experimentally obtaining maximal coherence via assisted distillation process. Optica, 4, 000454(2017).

    [38] W. Zheng, Z. Ma, H. Wang, S.-M. Fei, X. Peng. Experimental demonstration of observability and operability of robustness of coherence. Phys. Rev. Lett., 120, 230504(2018).

    [39] Y. Yuan, Z. Hou, Y.-Y. Zhao, H.-S. Zhong, G.-Y. Xiang, C.-F. Li, G.-C. Guo. Experimental demonstration of wave-particle duality relation based on coherence measure. Opt. Express, 26, 004470(2018).

    [40] W.-M. Lv, C. Zhang, X.-M. Hu, H. Cao, J. Wang, Y.-F. Huang, B.-H. Liu, C.-F. Li, G.-C. Guo. Experimental test of the trade-off relation for quantum coherence. Phys. Rev. A, 98, 062337(2018).

    [41] J. Gao, Z.-Q. Jiao, C.-Q. Hu, L.-F. Qiao, R.-J. Ren, H. Tang, Z.-H. Ma, S.-M. Fei, V. Vedral, X.-M. Jin. Experimental test of the relation between coherence and path information. Commun. Phys., 1, 89(2018).

    [42] C. Zhang, T. R. Bromley, Y.-F. Huang, H. Cao, W.-M. Lv, B.-H. Liu, C.-F. Li, G.-C. Guo, M. Cianciaruso, G. Adesso. Demonstrating quantum coherence and metrology that is resilient to transversal noise. Phys. Rev. Lett., 123, 180504(2019).

    [43] K.-D. Wu, Z. Hou, G.-Y. Xiang, C.-F. Li, G.-C. Guo, D. Dong, F. Nori. Detecting non-Markovianity via quantified coherence: theory and experiments. npj Quantum Inf., 6, 55(2020).

    [44] A. Smirne, T. Nitsche, D. Egloff, S. Barkhofen, S. De, I. Dhand, C. Silberhorn, S. F. Huelga, M. B. Plenio. Experimental control of the degree of non-classicality via quantum coherence. Quantum Sci. Technol., 5, 04LT01(2020).

    [45] Y. Yuan, Z. Hou, J.-F. Tang, A. Streltsov, G.-Y. Xiang, C.-F. Li, G.-C. Guo. Direct estimation of quantum coherence by collective measurements. npj Quantum Inf., 6, 46(2020).

    [46] H. Xu, F. Xu, T. Theurer, D. Egloff, Z.-W. Liu, N. Yu, M. B. Plenio, L. Zhang. Experimental quantification of coherence of a tunable quantum detector. Phys. Rev. Lett., 125, 060404(2020).

    [47] M. Hillery. Coherence as a resource in decision problems: the Deutsch-Jozsa algorithm and a variation. Phys. Rev. A, 93, 012111(2016).

    [48] H.-L. Shi, S.-Y. Liu, X.-H. Wang, W.-L. Yang, Z.-Y. Yang, H. Fan. Coherence depletion in the Grover quantum search algorithm. Phys. Rev. A, 95, 032307(2017).

    [49] K. C. Tan, T. Volkoff, H. Kwon, H. Jeong. Quantifying the coherence between coherent states. Phys. Rev. Lett., 119, 190405(2017).

    [50] H. Le Jeannic, A. Cavaillès, K. Huang, R. Filip, J. Laurat. Slowing quantum decoherence by squeezing in phase space. Phys. Rev. Lett., 120, 073603(2018).

    [51] A. Serafini, S. D. Siena, F. Illuminati, M. G. A. Paris. Minimum decoherence cat-like states in Gaussian noisy channels. J. Opt. B, 6, S591-S596(2004).

    [52] S. Glancy, H. M. Vasconcelos, T. C. Ralph. Transmission of optical coherent-state qubits. Phys. Rev. A, 70, 022317(2004).

    [53] K. C. Tan, S. Choi, H. Jeong. Negativity of quasiprobability distributions as a measure of nonclassicality. Phys. Rev. Lett., 124, 110404(2020).

    [54] A. I. Lvovsky, M. G. Raymer. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys., 81, 299-332(2009).

    [55] J. S. Neergaard-Nielsen. Generation of single photons and Schrödinger kitten states of light(2008).

    CLP Journals

    [1] Haijun Kang, Dongmei Han, Na Wang, Yang Liu, Shuhong Hao, Xiaolong Su, "Experimental demonstration of robustness of Gaussian quantum coherence," Photonics Res. 9, 1330 (2021)

    Tools

    Get Citation

    Copy Citation Text

    Miao Zhang, Haijun Kang, Meihong Wang, Fengyi Xu, Xiaolong Su, Kunchi Peng, "Quantifying quantum coherence of optical cat states," Photonics Res. 9, 887 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: Dec. 23, 2020

    Accepted: Mar. 10, 2021

    Published Online: May. 7, 2021

    The Author Email: Xiaolong Su (suxl@sxu.edu.cn)

    DOI:10.1364/PRJ.418417

    Topics