Journal of Inorganic Materials, Volume. 39, Issue 12, 1331(2024)
[2] LIAO Y Q, YUAN L X, HAN Y et al. Pentafluoro (phenoxy) cyclotriphosphazene stabilizes electrode/electrolyte interfaces for sodium-ion pouch cells of 145 Wh kg-1[J]. Advanced Materials, 36, e2312287(2024).
[3] ZHAO A, FANG Y J, AI X P et al. Mixed polyanion cathode materials: toward stable and high-energy sodium-ion batteries[J]. Journal of Energy Chemistry, 635(2021).
[4] WANG X, HUANG H J, ZHOU F et al. High-voltage aqueous planar symmetric sodium ion micro-batteries with superior performance at low-temperature of -40 ℃[J]. Nano Energy, 105688(2021).
[5] NIMKAR A, SHPIGEL N, MALCHIK F et al. Unraveling the role of fluorinated alkyl carbonate additives in improving cathode performance in sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 13, 46478(2021).
[6] LI W K, ZHAO N, BI Z J et al. Na3Zr2Si2PO12 ceramic electrolytes for Na-ion battery: preparation using spray-drying method and its property[J]. Journal of Inorganic Materials, 37, 189(2022).
[7] LIANG J N, LUO J, SUN Q et al. Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries[J]. Energy Storage Materials, 308(2019).
[9] BI Z J, SHI R D, LIU X N.
[10] WEN P C, LU P F, SHI X Y et al. Photopolymerized gel electrolyte with unprecedented room-temperature ionic conductivity for high- energy-density solid-state sodium metal batteries[J]. Advanced Energy Materials, 11, 2002930(2021).
[11] BI Z J, HUANG W L, MU S et al. Dual-interface reinforced flexible solid garnet batteries enabled by
[12] BI Z J, SUN Q F, JIA M Y et al. Molten salt driven conversion reaction enabling lithiophilic and air-stable garnet surface for solid-state lithium batteries[J]. Advanced Functional Materials, 32, 2208751(2022).
[13] ZHANG T W, ZHANG J, YANG S et al. Facile
[14] SWORAKOWSKI J, LIPINSKI J, JANUS K. On the reliability of determination of energies of HOMO and LUMO levels in organic semiconductors from electrochemical measurements. A simple picture based on the electrostatic model[J]. Organic Electronics, 300(2016).
[16] ZHANG L B, DESHMUKH J, HIJAZI H et al. Impact of calcium on air stability of Na[Ni1/3Fe1/3Mn1/3]O2 positive electrode material for sodium-ion batteries[J]. Journal of the Electrochemical Society, 170, 070514(2023).
[17] FONDARD J, IRISARRI E, COURRÈGES C et al. SEI composition on hard carbon in Na-ion batteries after long cycling: influence of salts (NaPF6, NaTFSI) and additives (FEC, DMCF)[J]. Journal of the Electrochemical Society, 167, 070526(2020).
[19] LIU M Q, WU F, GONG Y T et al. Interfacial-catalysis-enabled layered and inorganic-rich SEI on hard carbon anodes in ester electrolytes for sodium-ion batteries[J]. Advanced Materials, 35, 2300002(2023).
[20] ZHOU X Z, ZHANG Q, ZHU Z et al. Anion-reinforced solvation for a gradient inorganic-rich interphase enables high-rate and stable sodium batteries[J]. Angewandte Chemie International Edition, 61, e202205045(2022).
[21] LU Z Y, GENG C N, YANG H J et al. Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes[conf-proc]. Proceedings of the National Academy of Sciences of the United States of America, 119, e2210203119(2022).
[22] LI Y M, HU Y S, TITIRICI M M et al. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries[J]. Advanced Energy Materials, 6, 1600659(2016).
[23] LI Y, HU Y S, QI X et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications[J]. Energy Storage Materials, 191(2016).
Get Citation
Copy Citation Text
Jianfeng KONG, Jiecheng HUANG, Zhaolin LIU, Cunsheng LIN, Zhiyu WANG.
Category:
Received: Apr. 22, 2024
Accepted: --
Published Online: Jan. 21, 2025
The Author Email: Cunsheng LIN (lincunsheng@valiant-cn.com), Zhiyu WANG (zywang@dlut.edu.cn)