Chinese Optics, Volume. 16, Issue 5, 1226(2023)

Development of a doppler asymmetric spatial heterodyne interferometer for ground-based wind field detection at the 557.7 nm wavelength

Huan LIU1, Lun JIANG1,2,3、*, Xiao-fei ZHANG1, Yun FU1, Yan-song SONG1,2,3, Shou-feng TONG1,2,3, and Xian-zhu LIU1,2,3
Author Affiliations
  • 1School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • 2Peng Cheng Laboratory, Shenzhen 518000, China
  • 3Key Laboratory of Fundamental Science for National Defense of Aero and Ground Laser Communication Technology, Changchun University of Science and Technology, Changchun 130022, China
  • show less
    Figures & Tables(24)
    Diagram of the DASH interferometer structure
    Curves of the modulation and phase difference varying with optical path difference of the 557.7 nm spectral line at 90–110 km
    Curves of the modulation and phase difference varying with optical path difference of the 557.7 nm spectral line at 150–300 km
    Plot of the optical path difference versus the interferogram intensity difference
    Optical path diagram of the interference module
    (a) Relationship between signal to noise ratio and pixel position; (b) graph of variation of wind speed error with SNR
    The MTF curves of the entrance optics
    (a) MTF of the exit optics and (b) dot chart of the exit optics
    (a) Two-dimensional system diagram; (b) three-dimensional system diagram
    Real image of the interferometer
    Real image of the narrow band filter
    (a) Schematic diagram of the laboratory debugging device; (b) photograph of the laboratory debugging device
    Streaks made by krypton lamps in the laboratory
    Integrated ground-based DASH interferometer
    Photograph of the ground experiment setup
    Night airglow interferogram
    Interferogram of krypton lamp on September 27
    Interferogram of night airglow on September 27
    Schematic diagram of wind speed simulation
    The corresponding interferogram is 1810, 2021 and 2203 r/min, respectively
    • Table 1. DASH system parameter list

      View table
      View in Article

      Table 1. DASH system parameter list

      System ParameterValue
      Transmittance of an optical system: τtot(σ). 0.07
      Detector quantum efficiency: η(σ) 0.9
      Optical system: F # 3.862
      Detector pixel size: d13 μm
      Dark current ηdark (refrigeration temperature dd0/dT:−80 °C) 0.00025
      Readout noise: σread1e-/p·s-1
    • Table 2. Design indices of the dual telecentric optical system

      View table
      View in Article

      Table 2. Design indices of the dual telecentric optical system

      ParameterSystem indicators
      Wavelength557.7 nm
      Magnification−0.9715
      F#9
      Distortion2.4×10−5
      Back focal length30 mm
      Telecentricity<7.0×10−3
    • Table 3. Basic parameters of DASH interferometer

      View table
      View in Article

      Table 3. Basic parameters of DASH interferometer

      ParameterSystem indicators
      Littrow wavelength557.7 nm
      Half of view angle2.815°
      Diameter of the pupil40 mm
      Field of view extension prism MaterialsH-LAK2A
      Angulus parietalis8.7424°
      Wedged spacersMaterialsFused silica (spacers1); H-FK61 (spacers 2)
      ThicknessFused silica (spacers1); H-FK61 (spacers 2)
      Beam splitterSplitting ratio1∶1
      Asymmetrical20.363 mm
      MaterialsH-K9LAGT
      GratingsGrating Littrow angle9.631°
      Grating diffraction order1
      Grating effective width13.69 mm
      MaterialsFused silica
      Lines600 gr/mm
    • Table 4. DASH system specifications

      View table
      View in Article

      Table 4. DASH system specifications

      ParameterSystem indicators
      Resolving power16402.941
      measuring range90-110 km (Height of airglow)
      Resolution of measurement1.0933 cm−1 (0.034 nm)
      $\dfrac{ {{\rm{d}}\Delta { d_0} } }{ { {\rm{d} }T} }$2.224×10−7 mm/°C
      Etendue (AΩ)0.09525 cm2sr
      SNR113.75
      Decomposition of precision Temperature0.05 rad/°C
      SNRSNR>60,wind speed error <10−4 m/s
      Inversion accuracy (Nuttall window function, FWHM=10) 0.00064 m/s
    Tools

    Get Citation

    Copy Citation Text

    Huan LIU, Lun JIANG, Xiao-fei ZHANG, Yun FU, Yan-song SONG, Shou-feng TONG, Xian-zhu LIU. Development of a doppler asymmetric spatial heterodyne interferometer for ground-based wind field detection at the 557.7 nm wavelength[J]. Chinese Optics, 2023, 16(5): 1226

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Original Article

    Received: Nov. 13, 2022

    Accepted: --

    Published Online: Oct. 27, 2023

    The Author Email: Lun JIANG (jlciomp@163.com)

    DOI:10.37188/CO.EN-2022-0018

    Topics