Infrared Technology, Volume. 47, Issue 5, 591(2025)

Infrared Target Detection Algorithm Based on Improved YOLOv8 in Complex Street Scenes

Li HONG and Xiangjin ZENG*
Author Affiliations
  • School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
  • show less
    References(16)

    [2] [2] DAI X, YUAN X, WEI X. TIRNet: Object detection in thermal infrared images for autonomous driving[J].Applied Intelligence, 2020,51(3): 1244-1261.

    [6] [6] ZHANG H, LUO C, WANG Q, et al. A novel infrared video surveillance system using deep learning based techniques[J].Multimedia Tools and Applications, 2018:77(20): 26657-26676.

    [7] [7] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.

    [8] [8] Girshick R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.

    [9] [9] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:towards realtime object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6): 1137-1149.

    [10] [10] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, realtime object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.

    [11] [11] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of2017IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525.

    [12] [12] Redmon J, Farhadi A. Yolov3: An incremental improvement[J/OL]. arXiv preprint arXiv: 1804.02767, https://arxiv.org/abs/1804.02767.

    [13] [13] LIU W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]//Computer Vision–ECCV Proceedings,2016: 21-37.

    [14] [14] LIN T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.

    [19] [19] WU Haiping, XIAO Bin, Noel Codella, et al. CvT: Introducing convolutions to vision transformers[J/OL]. arXiv: 2103.15808, https://doi.org/10.48550/arXiv.2103.15808.

    [20] [20] Irwan Bello, Barret Zoph, Quoc Le, et al. Attention augmented convolutional networks[C]//IEEE International Conference on Computer Vision, 2019: 3286-3295.

    [21] [21] ZHANG H, Fromont E, Lefevre S, et al. Multispectral fusion for object detection with cyclic fuse-and-refine blocks[C]//IEEE International Conference on Image Processing, 2020: 276-280.

    [25] [25] Girshick R, Felzenszwalb P, FMcAllester D. Object Detection with Discriminatively Trained Part Based Models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010,32(9): 1627-1645.

    [26] [26] Pedersoli M, Vedaldi A, Gonz`alez J, et al. A coarse-to-fine approach for fast deformable object detection[J].Pattern Recognition,2015,48(5): 1844-1853,.

    [27] [27] YAN J, LEI Z, WEN L, et al. The fastest deformable part model for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2014: 2497-2504.

    Tools

    Get Citation

    Copy Citation Text

    HONG Li, ZENG Xiangjin. Infrared Target Detection Algorithm Based on Improved YOLOv8 in Complex Street Scenes[J]. Infrared Technology, 2025, 47(5): 591

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 28, 2023

    Accepted: Jul. 3, 2025

    Published Online: Jul. 3, 2025

    The Author Email: ZENG Xiangjin (xjzeng21@163.com)

    DOI:

    Topics