Infrared Technology, Volume. 47, Issue 3, 358(2025)

DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss

Yating ZHAO... Long HAN*, Huihuang HE and Chu CHEN |Show fewer author(s)
Author Affiliations
  • School of Electrical & Control Engineering, Heilongjiang University of Science & Technology, Harbin 150022, China
  • show less
    References(12)

    [9] [9] MA J, YU W, LIANG P, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26.

    [10] [10] SHEN J, CHEN Y, LIU Y, et al. ICAFusion: Iterative cross-attention guided feature fusion for multispectral object detection[J]. Pattern Recognition, 2024, 145: 109913.

    [11] [11] MA J, XU H, JIANG J, et al. DDcGAN: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 4980-4995.

    [12] [12] ZHANG Y, LIU Y, SUN P, et al. IFCNN: A general image fusion framework based on convolutional neural network[J]. Information Fusion, 2020, 54: 99-118.

    [13] [13] JIAN L, YANG X, LIU Z, et al. SEDRFuse: A symmetric encoder–decoder with residual block network for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 1-15.

    [14] [14] Chollet F. Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.

    [15] [15] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.

    [16] [16] Toet A. The TNO multiband image data collection[J]. Data in Brief, 2017, 15: 249-251.

    [17] [17] MA J, TANG L, FAN F, et al. SwinFusion: Cross-domain long-range learning for general image fusion via swin transformer[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(7): 1200-1217.

    [18] [18] LI H, WU X J. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2018, 28(5): 2614-2623.

    [19] [19] TANG L, YUAN J, ZHANG H, et al. PIAFusion: A progressive infrared and visible image fusion network based on illumination aware[J]. Information Fusion, 2022, 83: 79-92.

    [20] [20] LIU J, FAN X, HUANG Z, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5802-581.

    Tools

    Get Citation

    Copy Citation Text

    ZHAO Yating, HAN Long, HE Huihuang, CHEN Chu. DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss[J]. Infrared Technology, 2025, 47(3): 358

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 25, 2024

    Accepted: Apr. 18, 2025

    Published Online: Apr. 18, 2025

    The Author Email: Long HAN (yazhoulong@163.com)

    DOI:

    Topics