Laser & Optoelectronics Progress, Volume. 61, Issue 12, 1237002(2024)

Small-Target Traffic Sign Detection Based on Multiscale Feature Fusion

Fangke Jing1, Hongge Ren2、*, and Song Li1
Author Affiliations
  • 1College of Electrical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei , China
  • 2School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin 300384, China
  • show less
    Figures & Tables(12)
    Structure of YOLOv5
    Structure of STS-YOLO
    Different feature pyramid structures and F-BiFPN. (a) FPN; (b) PANet; (c) BiFPN; (d) F-BiFPN
    Improved structure of Neck and Head
    Schematic of Wise-IoU principle
    Traditional convolution and CoordConv
    Size distribution of traffic signs on TT100K dataset
    Comparison of detection performance between YOLOv5s and STS-YOLO. (a) (c) YOLOv5s; (b) (d) STS-YOLO
    • Table 1. Analysis of the impact of detection heads with different grid sizes on detection performance

      View table

      Table 1. Analysis of the impact of detection heads with different grid sizes on detection performance

      Experiment No.Grid scaleParams /107P /%R /%mAP@0.5 /%Speed /(frame·s-1
      1160×160, 80×80, 40×40, 20×207.5488.080.385.256.8
      2160×160, 80×80, 40×405.7188.079.885.862.5
      380×80, 40×40, 20×205.7587.680.184.945.7
      480×80, 40×405.6787.880.085.357.5
      5160×160, 80×805.6585.682.485.963.3
      6160×160, 40×405.6787.382.386.162.5
    • Table 2. Impact of different α and δ in Wise-IoU on the detection performance

      View table

      Table 2. Impact of different α and δ in Wise-IoU on the detection performance

      αδParams /107P /%R /%mAP@0.5 /%
      (2.5 , 2)5.6788.279.686.3
      (1.6 , 4)5.6787.881.586.4
      (1.4 , 5)5.6788.581.786.5
      (1.2 , 6)5.6789.881.386.9
      (1.0 , 7)5.6789.279.986.5
    • Table 3. Ablation experiment

      View table

      Table 3. Ablation experiment

      MethodNeck&HeadWise-IoU v3CoordConvParams /107P /%R /%mAP@0.5 /%Speed /(frame·s-1
      YOLOv5s7.186.879.285.564.1
      A5.787.382.386.162.5
      B7.185.976.385.864.1
      C10.387.180.285.756.2
      D5.789.881.386.962.5
      E6.289.181.787.255.7
      F6.288.882.387.755.7
    • Table 4. Comparison of different detection algorithms

      View table

      Table 4. Comparison of different detection algorithms

      MethodParamsP /%R /%APsmall /%mAP@0.5 /%Speed /(frame·s-1
      Faster R-CNN144.558.876.572.13
      Method in Ref.[1681.287.791.088.0
      YOLOv361.572.678.083.449.3
      YOLOv5s7.186.879.246.985.564.1
      YOLO7-tiny6.287.381.743.782.979.5
      YOLOv8n3.078.570.546.477.890.9
      YOLOv8s11.285.676.850.285.852.3
      STS-YOLO6.288.882.351.587.755.7
    Tools

    Get Citation

    Copy Citation Text

    Fangke Jing, Hongge Ren, Song Li. Small-Target Traffic Sign Detection Based on Multiscale Feature Fusion[J]. Laser & Optoelectronics Progress, 2024, 61(12): 1237002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Jun. 19, 2023

    Accepted: Aug. 30, 2023

    Published Online: Jun. 3, 2024

    The Author Email: Hongge Ren (renhg_tcu@163.com)

    DOI:10.3788/LOP231563

    CSTR:32186.14.LOP231563

    Topics