Chinese Journal of Lasers, Volume. 50, Issue 17, 1714013(2023)

Terahertz Time‐Domain Spectroscopy of Warm Dense Gold

Xu Sun1, Haizhong Wu1, Xiaowei Wang1, Lü Zhihui1, Dongwen Zhang1、*, Dongxiao Liu2, Wei Fan2, Jingqin Su2, Weimin Zhou2, Yuqiu Gu2, Zengxiu Zhao1、**, and Jianmin Yuan1,3、***
Author Affiliations
  • 1College of Science, National University of Defense Technology, Changsha 410073, Hunan, China
  • 2Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, CAEP, Mianyang 621900, Sichuan, China
  • 3Graduate School of China Academy of Engineering Physics, Beijing 100193, China
  • show less
    References(50)

    [1] Lu J, Zhang Y Q, Hwang H Y et al. Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase[J]. Proceedings of the National Academy of Sciences, 113, 11800(2016).

    [2] Zhang Y Q, Shi J J, Li X et al. Nonlinear rotational spectroscopy reveals many-body interactions in water molecules[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, 2020941118(2021).

    [3] Hamm P, Savolainen J, Ono J et al. Note: inverted time-ordering in two-dimensional-Raman-terahertz spectroscopy of water[J]. The Journal of Chemical Physics, 136, 236101(2012).

    [4] Finneran I A, Welsch R, Allodi M A et al. Coherent two-dimensional terahertz-terahertz-Raman spectroscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 6857-6861(2016).

    [5] Johnson C L, Knighton B E, Johnson J A. Distinguishing nonlinear terahertz excitation pathways with two-dimensional spectroscopy[J]. Physical Review Letters, 122, 073901(2019).

    [6] Houver S, Huber L, Savoini M et al. 2D THz spectroscopic investigation of ballistic conduction-band electron dynamics in InSb[J]. Optics Express, 27, 10854-10865(2019).

    [7] Huang Y D, Xiang Z X, Xu X et al. Localized-plasma-assisted rotational transitions in the terahertz region[J]. Physical Review A, 103, 033109(2021).

    [8] Ulbricht R, Hendry E, Shan J E et al. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy[J]. Reviews of Modern Physics, 83, 543-586(2011).

    [9] Wu H Z, Guo Q A, Tu Y Y et al. Polarity reversal of terahertz electric field from heavily p-doped silicon surfaces[J]. Chinese Physics Letters, 38, 074201(2021).

    [10] Chen Z, Curry C B, Zhang R et al. Ultrafast multi-cycle terahertz measurements of the electrical conductivity in strongly excited solids[J]. Nature Communications, 12, 1638(2021).

    [11] Sie E J, Nyby C M, Pemmaraju C D et al. An ultrafast symmetry switch in a Weyl semimetal[J]. Nature, 565, 61-66(2019).

    [12] Nanni E A, Huang W R, Hong K H et al. Terahertz-driven linear electron acceleration[J]. Nature Communications, 6, 8486(2015).

    [13] Kealhofer C, Schneider W, Ehberger D et al. All-optical control and metrology of electron pulses[J]. Science, 352, 429-433(2016).

    [14] Zhang D F, Fallahi A, Hemmer M et al. Segmented terahertz electron accelerator and manipulator (STEAM)[J]. Nature Photonics, 12, 336-342(2018).

    [15] Zhang D F, Fallahi A, Hemmer M et al. Femtosecond phase control in high-field terahertz-driven ultrafast electron sources[J]. Optica, 6, 872-877(2019).

    [16] Mittleman D M. Twenty years of terahertz imaging[J]. Optics Express, 26, 9417-9431(2018).

    [17] Chai X, Ropagnol X, Raeis-Zadeh S M et al. Subcycle terahertz nonlinear optics[J]. Physical Review Letters, 121, 143901(2018).

    [18] Zalden P, Song L W, Wu X J et al. Molecular polarizability anisotropy of liquid water revealed by terahertz-induced transient orientation[J]. Nature Communications, 9, 2142(2018).

    [19] Schubert O, Hohenleutner M, Langer F et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations[J]. Nature Photonics, 8, 119-123(2014).

    [20] Hafez H A, Kovalev S, Deinert J C et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions[J]. Nature, 561, 507-511(2018).

    [21] Langer F, Hohenleutner M, Schmid C P et al. Lightwave-driven quasiparticle collisions on a subcycle timescale[J]. Nature, 533, 225-229(2016).

    [22] Jelic V, Iwaszczuk K, Nguyen P H et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface[J]. Nature Physics, 13, 591-598(2017).

    [23] Schlauderer S, Lange C, Baierl S et al. Temporal and spectral fingerprints of ultrafast all-coherent spin switching[J]. Nature, 569, 383-387(2019).

    [24] Liao G Q, Li Y T, Liu H et al. Multi millijoule coherent terahertz bursts from picosecond laser-irradiated metal foils[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 3994-3999(2019).

    [25] Hebling J, Stepanov A G, Almási G et al. Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts[J]. Applied Physics B, 78, 593-599(2004).

    [26] Jang D, Kang C, Lee S K et al. Scalable terahertz generation by large-area optical rectification at 80 TW laser power[J]. Optics Letters, 44, 5634-5637(2019).

    [27] Stepanov A G, Henin S, Petit Y et al. Mobile source of high-energy single-cycle terahertz pulses[J]. Applied Physics B, 101, 11-14(2010).

    [28] Hirori H, Doi A, Blanchard F et al. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3[J]. Applied Physics Letters, 98, 091106(2011).

    [29] Wu X J, Carbajo S, Ravi K et al. Terahertz generation in lithium niobate driven by Ti∶sapphire laser pulses and its limitations[J]. Optics Letters, 39, 5403-5406(2014).

    [30] Zhong S C, Li J, Zhai Z H et al. Generation of 0.19-mJ THz pulses in LiNbO3 driven by 800-nm femtosecond laser[J]. Optics Express, 24, 14828-14835(2016).

    [31] Wu X J, Ma J L, Zhang B L et al. Highly efficient generation of 0.2 mJ terahertz pulses in lithium niobate at room temperature with sub-50 fs chirped Ti∶sapphire laser pulses[J]. Optics Express, 26, 7107-7116(2018).

    [32] Zhang B L, Ma Z Z, Ma J L et al. 1.4-mJ high energy terahertz radiation from lithium niobates[J]. Laser & Photonics Reviews, 15, 2000295(2021).

    [33] Wu X J, Kong D Y, Hao S B et al. Generation of 13.9-mJ terahertz radiation from lithium niobate materials[J]. Advanced Materials, 35, 2208947(2023).

    [34] Auston D H, Cheung K P, Valdmanis J A et al. Cherenkov radiation from femtosecond optical pulses in electro-optic media[J]. Physical Review Letters, 53, 1555-1558(1984).

    [35] Wu Q, Zhang X C. Free-space electro-optic sampling of terahertz beams[J]. Applied Physics Letters, 67, 3523-3525(1995).

    [36] Karpowicz N, Dai J M, Lu X F et al. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”[J]. Applied Physics Letters, 92, 011131(2008).

    [37] Dai J M, Xie X, Zhang X C. Detection of broadband terahertz waves with a laser-induced plasma in gases[J]. Physical Review Letters, 97, 103903(2006).

    [38] Sun X, Lü Z H, Wu H Z et al. Broadband terahertz detection by laser plasma with balanced optical bias[J]. Sensors, 22, 7569(2022).

    [39] Teo S M, Ofori-Okai B K, Werley C A et al. Invited article: single-shot THz detection techniques optimized for multidimensional THz spectroscopy[J]. Review of Scientific Instruments, 86, 051301(2015).

    [40] Jiang Z P, Zhang X C. Electro-optic measurement of THz field pulses with a chirped optical beam[J]. Applied Physics Letters, 72, 1945-1947(1998).

    [41] Kim K Y, Yellampalle B, Glownia J H et al. Measurements of terahertz electrical conductivity of intense laser-heated dense aluminum plasmas[J]. Physical Review Letters, 100, 135002(2008).

    [42] van Tilborg J, Tóth C, Matlis N H et al. Single-shot measurement of the spectral envelope of broad-bandwidth terahertz pulses from femtosecond electron bunches[J]. Optics Letters, 33, 1186-1188(2008).

    [43] Matlis N H, Plateau G R, van Tilborg J et al. Single-shot spatiotemporal measurements of ultrashort THz waveforms using temporal electric-field cross correlation[J]. Journal of the Optical Society of America B, 28, 23-27(2010).

    [44] Li Y, Li C, Zhou M et al. Strong terahertz radiation from relativistic laser interaction with solid density plasmas[J]. Applied Physics Letters, 100, 254101(2012).

    [45] Kim K Y, Yellampalle B, Taylor A J et al. Single-shot terahertz pulse characterization via two-dimensional electro-optic imaging with dual echelons[J]. Optics Letters, 32, 1968-1970(2007).

    [46] Minami Y, Hayashi Y, Takeda J et al. Single-shot measurement of a terahertz electric-field waveform using a reflective echelon mirror[J]. Applied Physics Letters, 103, 051103(2013).

    [47] Katayama I, Sakaibara H, Takeda J. Real-time time–frequency imaging of ultrashort laser pulses using an echelon mirror[J]. Japanese Journal of Applied Physics, 50, 102701(2011).

    [48] Lloyd-Hughes J, Jeon T I. A review of the terahertz conductivity of bulk and nano-materials[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 33, 871-925(2012).

    [49] Haynes W[M]. CRC handbook of chemistry and physics(2014).

    [50] Cai J H, Zhang B L, Geng C Y et al. Lithium niobate strong field terahertz nonlinear spectroscopy[J]. Chinese Journal of Lasers, 50, 1714001(2023).

    Tools

    Get Citation

    Copy Citation Text

    Xu Sun, Haizhong Wu, Xiaowei Wang, Lü Zhihui, Dongwen Zhang, Dongxiao Liu, Wei Fan, Jingqin Su, Weimin Zhou, Yuqiu Gu, Zengxiu Zhao, Jianmin Yuan. Terahertz Time‐Domain Spectroscopy of Warm Dense Gold[J]. Chinese Journal of Lasers, 2023, 50(17): 1714013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: terahertz technology

    Received: May. 4, 2023

    Accepted: Jun. 19, 2023

    Published Online: Sep. 13, 2023

    The Author Email: Zhang Dongwen (dwzhang@nudt.edu.cn), Zhao Zengxiu (zhaozengxiu@nudt.edu.cn), Yuan Jianmin (jmyuan@gscaep.ac.cn)

    DOI:10.3788/CJL230791

    Topics