Laser & Optoelectronics Progress, Volume. 57, Issue 6, 061501(2020)

De-Noising Method for Seismic Data via Improved Convolution Neural Network

Shaohua Cui*, Suwen Li, and Xude Wang
Author Affiliations
  • College of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui 235000, China
  • show less
    Figures & Tables(8)
    Three stages of single-layer convolution neural network
    LeNet-5 system
    Denoising results of different algorithms for pre-stack seismic data. (a) Original seismic data; (b) noisy seismic data; (c) denoising results of SVD algorithm; (d) denoising results of BP algorithm; (e) denoising results of algorithm proposed in Ref. [9]; (f) denoising results of proposed algorithm
    Denoising results of different algorithms for post-stack seismic data. (a) Original seismic data; (b) noisy seismic data; (c) denoising results of SVD; (d) denoising results of BP; (e) denoising results of algorithm proposed in Ref. [9]; (f) denoising results of proposed algorithm
    • Table 1. MSE values corresponding to different sizes of convolution kernels and numbers of feature maps in C1 layer

      View table

      Table 1. MSE values corresponding to different sizes of convolution kernels and numbers of feature maps in C1 layer

      Number of feature maps3×35×57×79×9
      10.04750.05200.05850.0680
      20.03600.02450.05550.0445
      30.03400.02750.03650.0355
      40.03700.02500.03150.0300
      50.03120.02650.03450.0330
      60.04200.05200.03150.5000
      70.50000.03350.50000.0285
      80.50000.50000.03050.0285
      90.50000.02350.03850.5000
      100.50000.50000.03270.0290
      110.50000.50000.50000.0312
      120.50000.50000.50000.0441
      130.50000.50000.50000.5000
      140.50000.50000.50000.5000
      150.50000.50000.50000.5000
      160.50000.50000.50000.5000
    • Table 2. MSE values corresponding to different sizes of convolution kernels and feature map numbers of C3 layer when the convolution kernel size is 5×5 and the number of feature maps is 9 for

      View table

      Table 2. MSE values corresponding to different sizes of convolution kernels and feature map numbers of C3 layer when the convolution kernel size is 5×5 and the number of feature maps is 9 for

      Number of feature maps1×13×35×5
      10.06200.04600.0510
      20.05650.04250.0435
      30.05700.05450.0435
      40.04050.04100.0430
      50.04150.03400.0345
      60.05350.01900.0330
      70.04950.03700.0295
      80.03950.03250.0340
      90.04800.03950.0260
    • Table 3. Results of different algorithms for pre-stack and post-stack seismic data

      View table

      Table 3. Results of different algorithms for pre-stack and post-stack seismic data

      Seismic dataAlgorithmPSNR /dBSNR /dBMSE
      SVD62.916025.71890.0095
      Pre-stack dataBP61.035224.48990.0156
      Algorithm in Ref. [9]64.612927.39030.0080
      Proposed algorithm64.623628.16040.0067
      SVD61.232327.44490.0079
      Post-stack dataBP60.310424.66030.0150
      Algorithm in Ref. [9]64.902329.60880.0048
      Proposed algorithm66.671231.97280.0022
    • Table 4. Denoising results of proposed algorithm at different noise levels

      View table

      Table 4. Denoising results of proposed algorithm at different noise levels

      Noise level /%PSNR /dBSNR /dBMSE
      580.986138.32960.0005
      1071.089634.38000.0016
      1566.671231.97280.0022
      2065.540426.83080.0091
      2564.372023.71550.0150
      3063.759622.10310.0217
    Tools

    Get Citation

    Copy Citation Text

    Shaohua Cui, Suwen Li, Xude Wang. De-Noising Method for Seismic Data via Improved Convolution Neural Network[J]. Laser & Optoelectronics Progress, 2020, 57(6): 061501

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Jun. 12, 2019

    Accepted: Aug. 28, 2019

    Published Online: Mar. 6, 2020

    The Author Email: Shaohua Cui (flower0804@126.com)

    DOI:10.3788/LOP57.061501

    Topics