Photonics Research, Volume. 10, Issue 5, 1264(2022)
Four-wave mixing in 1.3 μm epitaxial quantum dot lasers directly grown on silicon Editors' Pick
[1] A. W. Elshaari, W. Pernice, K. Srinivasan, O. Benson, V. Zwiller. Hybrid integrated quantum photonic circuits. Nat. Photonics, 14, 285-298(2020).
[2] R. Helkey, A. A. Saleh, J. Buckwalter, J. E. Bowers. High-performance photonic integrated circuits on silicon. IEEE J. Sel. Top. Quantum Electron., 25, 8300215(2019).
[3] J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, J. E. Bowers. A review of high-performance quantum dot lasers on silicon. IEEE J. Quantum Electron., 55, 2000511(2019).
[4] M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, H. Liu. Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon. Photon. Res., 6, 1062-1066(2018).
[5] K. Nishi, K. Takemasa, M. Sugawara, Y. Arakawa. Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J. Sel. Top. Quantum Electron., 23, 1901007(2017).
[6] C. Zhang, D. Liang, G. Kurczveil, A. Descos, R. G. Beausoleil. Hybrid quantum-dot microring laser on silicon. Optica, 6, 1145-1151(2019).
[7] J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, J. E. Bowers. The importance of p-doping for quantum dot laser on silicon performance. IEEE J. Quantum Electron., 55, 2001111(2019).
[8] F. Grillot, J. C. Norman, J. Duan, Z. Zhang, B. Dong, H. Huang, W. W. Chow, J. E. Bowers. Physics and applications of quantum dot lasers for silicon photonics. Nanophotonics, 9, 1271-1286(2020).
[9] J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, F. Grillot. 1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon. IEEE Photon. Technol. Lett., 31, 345-348(2019).
[10] J. C. Norman, D. Jung, Y. Wan, J. E. Bowers. Perspective: the future of quantum dot photonic integrated circuits. APL Photon., 3, 030901(2018).
[11] W. W. Chow, F. Jahnke. On the physics of semiconductor quantum dots for applications in lasers and quantum optics. Prog. Quantum Electron., 37, 109-184(2013).
[12] B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, M. Lipson. On-chip mode-division multiplexing switch. Optica, 2, 530-535(2015).
[13] Q. Cheng, M. Bahadori, M. Glick, S. Rumley, K. Bergman. Recent advances in optical technologies for data centers: a review. Optica, 5, 1354-1370(2018).
[14] S. Liu, D. Jung, J. Norman, M. Kennedy, A. Gossard, J. Bowers. 490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si. Electron. Lett., 54, 432-433(2018).
[15] B. Dong, H. Huang, J. Duan, G. Kurczveil, D. Liang, R. G. Beausoleil, F. Grillot. Frequency comb dynamics of a 1.3 μm hybrid-silicon quantum dot semiconductor laser with optical injection. Opt. Lett., 44, 5755-5758(2019).
[16] P. Bardella, L. L. Columbo, M. Gioannini. Self-generation of optical frequency comb in single section quantum dot Fabry-Perot lasers: a theoretical study. Opt. Express, 25, 26234-26252(2017).
[17] X. Huang, A. Stintz, H. Li, L. Lester, J. Cheng, K. Malloy. Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers. Appl. Phys. Lett., 78, 2825-2827(2001).
[18] J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, D. J. Richardson. Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold. IEEE Photon. Technol. Lett., 15, 440-442(2003).
[19] T. H. Tuan, T. Cheng, K. Asano, Z. Duan, W. Gao, D. Deng, T. Suzuki, Y. Ohishi. Optical parametric gain and bandwidth in highly nonlinear tellurite hybrid microstructured optical fiber with four zero-dispersion wavelengths. Opt. Express, 21, 20303-20312(2013).
[20] M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, D. Moss. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat. Photonics, 2, 737-740(2008).
[21] M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. Little, S. Chu, D. J. Moss. Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million. Opt. Express, 17, 14098-14103(2009).
[22] J. R. Ong, R. Kumar, R. Aguinaldo, S. Mookherjea. Efficient cw four-wave mixing in silicon-on-insulator micro-rings with active carrier removal. IEEE Photon. Technol. Lett., 25, 1699-1702(2013).
[23] G. P. Agrawal. Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers. J. Opt. Soc. Am. B, 5, 147-159(1988).
[24] H. Huang, D. Arsenijević, K. Schires, T. Sadeev, D. Erasme, D. Bimberg, F. Grillot. Efficiency of four-wave mixing in injection-locked InAs/GaAs quantum-dot lasers. AIP Adv., 6, 125105(2016).
[25] T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, H. Ishikawa. Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices. IEEE J. Quantum Electron., 37, 1059-1065(2001).
[26] H. Ishikawa. Applications of quantum dot to optical devices. Semiconductors and Semimetals, 60, 287-324(1999).
[27] H. Su, H. Li, L. Zhang, Z. Zou, A. Gray, R. Wang, P. Varangis, L. Lester. Nondegenerate four-wave mixing in quantum dot distributed feedback lasers. IEEE Photon. Technol. Lett., 17, 1686-1688(2005).
[28] T. Sadeev, H. Huang, D. Arsenijević, K. Schires, F. Grillot, D. Bimberg. Highly efficient non-degenerate four-wave mixing under dual-mode injection in InP/InAs quantum-dash and quantum-dot lasers at 1.55 μm. Appl. Phys. Lett., 107, 191111(2015).
[29] P. J. Poole, Z. Lu, J. Liu, P. Barrios, Y. Mao, G. Liu. A performance comparison between quantum dash and quantum well Fabry-Pérot lasers. IEEE J. Quantum Electron., 57, 2500207(2021).
[30] J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. Bowers, F. Grillot. Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor. Appl. Phys. Lett., 112, 251111(2018).
[31] J. Duan, Y. Zhou, B. Dong, H. Huang, J. C. Norman, D. Jung, Z. Zhang, C. Wang, J. E. Bowers, F. Grillot. Effect of p-doping on the intensity noise of epitaxial quantum dot lasers on silicon. Opt. Lett., 45, 4887-4890(2020).
[32] D. G. Deppe, H. Huang, O. B. Shchekin. Modulation characteristics of quantum-dot lasers: The influence of p-type doping and the electronic density of states on obtaining high speed. IEEE J. Quantum Electron., 38, 1587-1593(2002).
[33] M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, L. F. Lester. GaAs-based quantum dot lasers. Semiconductors and Semimetals, 371-417(2012).
[34] Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, J. E. Bowers. Effects of modulation p doping in InAs quantum dot lasers on silicon. Appl. Phys. Lett., 113, 061105(2018).
[35] W. W. Chow, S. Liu, Z. Zhang, J. E. Bowers, M. Sargent. Multimode description of self-mode locking in a single-section quantum-dot laser. Opt. Express, 28, 5317-5330(2020).
[36] F. Grillot, J. Duan, B. Dong, H. Huang, S. Liu, W. Chow, J. Norman, J. Bowers. Quantum dot lasers based photonics integrated circuits. IEEE Photonics Conference (IPC), 1-2(2020).
[37] M. Sargent, M. Scully, W. Lamb. Laser Physics(1974).
[38] D. Nielsen, S. L. Chuang. Four-wave mixing and wavelength conversion in quantum dots. Phys. Rev. B, 81, 035305(2010).
[39] G. Moody, L. Chang, T. J. Steiner, J. E. Bowers. Chip-scale nonlinear photonics for quantum light generation. AVS Quantum Sci., 2, 041702(2020).
[40] T. J. Steiner, J. E. Castro, L. Chang, Q. Dang, W. Xie, J. Norman, J. E. Bowers, G. Moody. Ultrabright entangled-photon-pair generation from an AlGaAs-on-insulator microring resonator. PRX Quantum, 2, 010337(2021).
[41] F. Jérémie, C. Chabran, P. Gallion. Room-temperature generation of amplitude-squeezed light from 1550-nm distributed-feedback semiconductor lasers. J. Opt. Soc. Am. B, 16, 460-464(1999).
[42] J.-L. Vey, P. Gallion. Semiclassical model of semiconductor laser noise and amplitude noise squeezing. II. Application to complex laser structures. IEEE J. Quantum Electron., 33, 2105-2110(1997).
[43] Z. Qin, J. Jing, J. Zhou, C. Liu, R. C. Pooser, Z. Zhou, W. Zhang. Compact diode-laser-pumped quantum light source based on four-wave mixing in hot rubidium vapor. Opt. Lett., 37, 3141-3143(2012).
[44] Y. Zhao, Y. Okawachi, J. K. Jang, X. Ji, M. Lipson, A. L. Gaeta. Near-degenerate quadrature-squeezed vacuum generation on a silicon-nitride chip. Phys. Rev. Lett., 124, 193601(2020).
Get Citation
Copy Citation Text
Jianan Duan, Bozhang Dong, Weng W. Chow, Heming Huang, Shihao Ding, Songtao Liu, Justin C. Norman, John E. Bowers, Frédéric Grillot, "Four-wave mixing in 1.3 μm epitaxial quantum dot lasers directly grown on silicon," Photonics Res. 10, 1264 (2022)
Category: Lasers and Laser Optics
Received: Nov. 10, 2021
Accepted: Feb. 28, 2022
Published Online: Apr. 20, 2022
The Author Email: Jianan Duan (duanjianan@hit.edu.cn)