Infrared and Laser Engineering, Volume. 51, Issue 7, 20220211(2022)

Tuning the optical properties of chiral two-dimensional perovskites by high pressure

Shuai Zhao and Shenyu Dai
Author Affiliations
  • Department of Photoelectric Technology, Jihua Laboratory, Foshan 528200, China
  • show less
    References(30)

    [1] Long G, Sabatini R, Saidaminov M I, et al. Chiral-perovskite optoelectronics[J]. Nature Reviews Materials, 5, 423-439(2020).

    [2] Ma J, Wang H, Li D. Recent progress of chiral perovskites: materials, synthesis, and properties[J]. Advanced Materials, 33, 2008785(2021).

    [3] Ma S, Ahn J, Moon J. Chiral perovskites for next-generation photonics: from chirality transfer to chiroptical activity[J]. Advanced Materials, 33, 2005760(2021).

    [4] Chen Y, Sun Y, Peng J, et al. 2D Ruddlesden–Popper perovskites for optoelectronics[J]. Advanced Materials, 30, 1703487(2018).

    [5] Vashishtha P, Ng M, Shivarudraiah S B, et al. High efficiency blue and green light-emitting diodes using Ruddlesden–Popper inorganic mixed halide perovskites with butylammonium interlayers[J]. Chemistry of Materials, 31, 83-89(2018).

    [6] Fang C, Wang H, Shen Z, et al. High-performance photodetectors based on lead-free 2D Ruddlesden–Popper perovskite/MoS2 heterostructures[J]. ACS applied materials, 11, 8419-8427(2019).

    [7] Yang Z, Wang M, Zhang M, . All-inorganic perovskite nanocrystal film photodetector[J]. Infrared and Laser Engineering, 47, 0920007(2018).

    [8] Cheng P, Xu Z, Li J, et al. Highly efficient Ruddlesden–Popper halide perovskite PA2MA4Pb5I16 solar cells[J]. ACS Energy Letters, 3, 1975-1982(2018).

    [9] Schmitt T, Bourelle S, Tye N, et al. Control of crystal symmetry breaking with halogen-substituted benzylammonium in layered hybrid metal-halide perovskites[J]. Journal of the American Chemical Society, 142, 5060-5067(2020).

    [10] Ahn J, Ma S, Kim J Y, et al. Chiral 2D organic inorganic hybrid perovskite with circular dichroism tunable over wide wavelength range[J]. Journal of the American Chemical Society, 142, 4206-4212(2020).

    [11] Ma J, Fang C, Chen C, et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence[J]. ACS Nano, 13, 3659-3665(2019).

    [12] Yuan C, Li X, Semin S, et al. Chiral lead halide perovskite nanowires for second-order nonlinear optics[J]. Nano Letters, 18, 5411-5417(2018).

    [13] Li L S, Tan Y H, Wei W J, et al. Chiral switchable low-dimensional perovskite ferroelectrics[J]. ACS Applied Materials, 13, 2044-2051(2020).

    [14] Billing D G. Lemmerer A. Bis [(S)-β-phenethylammonium] tribromoplumbate (II)[J]. Acta Crystallographica Section E:Structure Reports Online, 59, m381-m383(2003).

    [15] Ahn J, Lee E, Tan J, et al. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites[J]. Materials Horizons, 4, 851-856(2017).

    [16] Zheng Y, Han X, Xu J. Recent progress in nonlinear optics of 2D organic-inorganic hybrid perovskites (Invited)[J]. Infrared and Laser Engineering, 49, 20201063(2020).

    [17] Dong Y, Zhang Y, Li X, et al. Chiral perovskites: promising materials toward next-generation optoelectronics[J]. Small, 15, 1902237(2019).

    [18] Chen C, Gao L, Gao W, et al. Circularly polarized light detection using chiral hybrid perovskite[J]. Nature Communications, 10, 1927(2019).

    [19] Li D, Liu X, Wu W, et al. Chiral lead-free hybrid perovskites for self-powered circularly polarized light detection[J]. Angewandte Chemie, 133, 8496-8499(2021).

    [20] Jaffe A, Lin Y, Karunadasa H I. Halide perovskites under pressure: accessing new properties through lattice compression[J]. ACS Energy Letters, 2, 1549-1555(2017).

    [21] Swainson I, Tucker M, Wilson D, et al. Pressure response of an organic-inorganic perovskite: methylammonium lead bromide[J]. Chemistry of Materials, 19, 2401-2405(2007).

    [22] Capitani F, Marini C, Caramazza S, et al. High-pressure behavior of methylammonium lead iodide (MAPbI3) hybrid perovskite[J]. Journal of Applied Physics, 119, 185901(2016).

    [23] Qin Z, Dai S, Hadjiev V G, et al. Revealing the origin of luminescence center in 0 D Cs4PbBr6 perovskite[J]. Chemistry of Materials, 31, 9098-9104(2019).

    [24] Ma Z, Liu Z, Lu S, et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals[J]. Nature Communications, 9, 4506(2018).

    [25] Wang Y, Guo S, Luo H, et al. Reaching 90% photoluminescence quantum yield in one-dimensional metal halide C4N2H14PbBr4 by pressure-suppressed nonradiative loss[J]. Journal of the American Chemical Society, 142, 16001-16006(2020).

    [26] Li Q, Xu B, Chen Z, et al. Excitation-dependent emission color tuning of 0D Cs2InBr5·H2O at high pressure[J]. Advanced Functional Materials, 31, 2104923(2021).

    [27] Zhao D, Xiao G, Liu Z, et al. Harvesting cool daylight in hybrid organic-inorganic halides microtubules through the reservation of pressure-induced emission[J]. Advanced Materials, 33, 2100323(2021).

    [28] Zhao J, Zhao Y, Guo Y, et al. Layered metal-halide perovskite single-crystalline microwire arrays for anisotropic nonlinear optics[J]. Advanced Functional Materials, 31, 2105855(2021).

    [29] Guo S, Zhao Y, Bu K, et al. Pressure-suppressed carrier trapping leads to enhanced emission in two‐dimensional perovskite (HA)2(GA)Pb2I7[J]. Angewandte Chemie, 132, 17686-17692(2020).

    [30] [30] Shi Shunxiang, Chen Guofu, Zhao Wei, et al. Nonlinear Optics[M]. Xi''an: Xidian University Press, 2012. (in Chinese)

    Tools

    Get Citation

    Copy Citation Text

    Shuai Zhao, Shenyu Dai. Tuning the optical properties of chiral two-dimensional perovskites by high pressure[J]. Infrared and Laser Engineering, 2022, 51(7): 20220211

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials & Thin films

    Received: Mar. 22, 2022

    Accepted: --

    Published Online: Dec. 20, 2022

    The Author Email:

    DOI:10.3788/IRLA20220211

    Topics