Acta Optica Sinica, Volume. 44, Issue 1, 0106012(2024)

Research Progress of Phase-Sensitive Optical Time Domain Reflectometry Based on Optical Pulse Coding Technique

Chunye Liu1, Anchi Wan1, Yongxin Liang1, Jialin Jiang1, Yue Wu1, Bin Zhang1, Ziwen Deng1, Yunjiang Rao1,2, and Zinan Wang1、*
Author Affiliations
  • 1Key Laboratory of Optical Fiber Sensing and Communications, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan , China
  • 2Research Center for Optical Fiber Sensing, Zhejiang Lab , Hangzhou 311121, Zhejiang , China
  • show less
    References(61)

    [1] Yuan L B, Tong W J, Jiang S et al. Road map of fiber optic sensor technology in China[J]. Acta Optica Sinica, 42, 0100001(2022).

    [2] Wu H J, Wang Z N, Peng F et al. Field test of a fully distributed fiber optic intrusion detection system for long-distance security monitoring of national borderline[J]. Proceedings of SPIE, 9157, 915790(2014).

    [3] Cram D, Hatch C E, Tyler S et al. Use of distributed temperature sensing technology to characterize fire behavior[J]. Sensors, 16, 1712(2016).

    [4] Tejedor J, Macias-Guarasa J, Martins H et al. A novel fiber optic based surveillance system for prevention of pipeline integrity threats[J]. Sensors, 17, 355(2017).

    [5] Kowarik S, Hussels M T, Chruscicki S et al. Fiber optic train monitoring with distributed acoustic sensing: conventional and neural network data analysis[J]. Sensors, 20, 450(2020).

    [6] Ruan J, Zhu Z J, Sun H et al. SNR improvement methods for phase-sensitive optical t ime-domain reflectometer for UHV DC control and protection system[J]. Chinese Journal of Lasers, 49, 0906005(2022).

    [7] Barrias A, Casas J R, Villalba S. A review of distributed optical fiber sensors for civil engineering applications[J]. Sensors, 16, 748(2016).

    [8] Agrawal G, Jia D F, Ge F C, Wang Z Y et al[M]. Nonlinear fiber optics, 245-273(2010).

    [9] Bolognini G, Park J, Kim P et al. Performance enhancement of Raman-based distributed temperature sensors using simplex codes[C](2006).

    [10] Soto M A, Sahu P K, Faralli S et al. Distributed temperature sensor system based on Raman scattering using correlation-codes[J]. Electronics Letters, 43, 862-864(2007).

    [11] Soto M A, Nannipieri T, Signorini A et al. Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding[J]. Optics Letters, 36, 2557-2559(2011).

    [12] Soto M A, Nannipieri T, Signorini A et al. Advanced cyclic coding technique for long-range Raman DTS systems with meter-scale spatial resolution over standard SMF[C], 878-881(2012).

    [13] Rosolem J B, Bassan F R, de Freitas D E et al. Raman DTS based on OTDR improved by using gain-controlled EDFA and pre-shaped simplex code[J]. IEEE Sensors Journal, 17, 3346-3353(2017).

    [14] Vazquez G D B, Martínez O E, Kunik D. Distributed temperature sensing using cyclic pseudorandom sequences[J]. IEEE Sensors Journal, 17, 1686-1691(2017).

    [15] Lauber T, Cedilnik G, Lees G. Physical limits of Raman distributed temperature sensing-are we there yet?[C], WF30(2018).

    [16] Soto M A, Bolognini G, di Pasquale F et al. Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range[J]. Optics Letters, 35, 259-261(2010).

    [17] Soto M A, Bolognini G, di Pasquale F. Analysis of pulse modulation format in coded BOTDA sensors[J]. Optics Express, 18, 14878-14892(2010).

    [18] Liang H, Li W H, Linze N et al. High-resolution DPP-BOTDA over 50 km LEAF using return-to-zero coded pulses[J]. Optics Letters, 35, 1503-1505(2010).

    [19] Soto M A, Bolognini G, di Pasquale F. Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification[J]. Optics Letters, 36, 232-234(2011).

    [20] Mao Y, Guo N, Yu K L et al. 1-cm-spatial-resolution Brillouin optical time-domain analysis based on bright pulse Brillouin gain and complementary code[J]. IEEE Photonics Journal, 4, 2243-2248(2012).

    [21] Soto M A, le Floch S, Thévenaz L. Bipolar optical pulse coding for performance enhancement in BOTDA sensors[J]. Optics Express, 21, 16390-16397(2013).

    [22] Fu Y, Zhu R C, Han B et al. 175-km repeaterless BOTDA with hybrid high-order random fiber laser amplification[J]. Journal of Lightwave Technology, 37, 4680-4686(2019).

    [23] Sun X Z, Yang Z S, Hong X B et al. Genetic-optimised aperiodic code for distributed optical fibre sensors[J]. Nature Communications, 11, 5774(2020).

    [24] le Floch S, Sauser F, Soto M A et al. Time/frequency coding for Brillouin distributed sensors[J]. Proceedings of SPIE, 8421, 84211J(2012).

    [25] le Floch S, Sauser F, Llera M et al. Novel Brillouin optical time-domain analyzer for extreme sensing range using high-power flat frequency-coded pump pulses[J]. Journal of Lightwave Technology, 33, 2623-2627(2015).

    [26] Okada K, Hashimoto K, Shibata T et al. Optical cable fault location using correlation technique[J]. Electronics Letters, 16, 629(1980).

    [27] Nazarathy M, Newton S A, Giffard R P et al. Real-time long range complementary correlation optical time domain reflectometer[J]. Journal of Lightwave Technology, 7, 24-38(1989).

    [28] Jones M D. Using simplex codes to improve OTDR sensitivity[J]. IEEE Photonics Technology Letters, 5, 822-824(1993).

    [29] Lee D, Yoon H, Kim N Y et al. Analysis and experimental demonstration of simplex coding technique for SNR enhancement of OTDR[C], 118-122(2004).

    [30] Lee D, Yoon H, Kim P et al. Optimization of SNR improvement in the noncoherent OTDR based on simplex codes[J]. Journal of Lightwave Technology, 24, 322-328(2006).

    [31] Sahu P K, Gowre S C, Mahapatra S. Optical time-domain reflectometer performance improvement using complementary correlated Prometheus orthonormal sequence[J]. IET Optoelectronics, 2, 128-133(2008).

    [32] Muhammad S S, Mehmood H, Naseem A et al. Hybrid coding technique for pulse detection in an optical time domain reflectometer[J]. Radio Engineering, 21, 624-631(2012).

    [33] Muanenda Y, Oton C J, Faralli S et al. A cost-effective distributed acoustic sensor using a commercial off-the-shelf DFB laser and direct detection phase-OTDR[J]. IEEE Photonics Journal, 8, 6800210(2015).

    [34] Martins H F, Shi K, Thomsen B C et al. Real time dynamic strain monitoring of optical links using the backreflection of live PSK data[J]. Optics Express, 24, 22303-22318(2016).

    [35] Shiloh L, Levanon N, Eyal A. Highly-sensitive distributed dynamic strain sensing via perfect periodic coherent codes[C], TuE25(2018).

    [36] Zhang B, Wang Z N, Lin S T et al. Linearization and pulse-coding of phase-sensitive OTDR for distributed acoustic sensing[C], TuE87(2018).

    [37] Wang Z N, Zhang B, Xiong J et al. Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR[J]. IEEE Internet of Things Journal, 6, 6117-6124(2019).

    [38] Mompó J J, Shiloh L, Arbel N et al. Distributed dynamic strain sensing via perfect periodic coherent codes and a polarization diversity receiver[J]. Journal of Lightwave Technology, 37, 4597-4602(2019).

    [39] Wu Y, Wang Z N, Xiong J et al. Bipolar coding for phase-demodulated Φ-OTDR with coherent detection[C](2019).

    [40] Wu Y, Wang Z N, Xiong J et al. Interference fading elimination with single rectangular pulse in Φ-OTDR[J]. Journal of Lightwave Technology, 37, 3381-3387(2019).

    [41] Liu C Y. Distributed frequency drift compensation technology for bipolar Golay coded Φ-OTDR[D](2022).

    [42] Wu Y, Wang Z N, Xiong J et al. Bipolar-coding Φ-OTDR with interference fading elimination and frequency drift compensation[J]. Journal of Lightwave Technology, 38, 6121-6128(2020).

    [43] Guerrier S, Dorize C, Awwad E et al. Introducing coherent MIMO sensing, a fading-resilient, polarization-independent approach to ϕ-OTDR[J]. Optics Express, 28, 21081-21094(2020).

    [44] Li P H, Wang Y, Yin K et al. Random coding method for coherent detection φ-OTDR without optical amplifier[J]. Optics and Lasers in Engineering, 161, 107318(2023).

    [45] Zhang Y X, Fu S Y, Chen Y S et al. A visibility enhanced broadband phase-sensitive OTDR based on the UWFBG array and frequency-division-multiplexing[J]. Optical Fiber Technology, 53, 101995(2019).

    [46] Wu M S, Fan X Y, Zhang X P et al. Frequency response enhancement of phase-sensitive OTDR for interrogating weak reflector array by using OFDM and Vernier effect[J]. Journal of Lightwave Technology, 38, 4874-4882(2020).

    [47] Ogden H M, Beresna M, Lee T et al. Enhanced bandwidth distributed acoustic sensing using a frequency multiplexed pulse train and micro-machined point reflector fiber[J]. Optics Letters, 47, 529-532(2022).

    [48] Wang Z T, Jiang J L, Xiong J et al. Fiber-optic quasi-distributed acoustic sensing system at doubled repetition rate[C](2019).

    [49] Wang Z T, Jiang J L, Wang Z N et al. Bandwidth-enhanced quasi-distributed acoustic sensing with interleaved chirped pulses[J]. IEEE Sensors Journal, 20, 12739-12743(2020).

    [50] Wang Z T, Jiang J L, Wang Z N et al. Quasi-distributed acoustic sensing with interleaved identical chirped pulses for multiplying the measurement slew-rate[J]. Optics Express, 28, 38465-38479(2020).

    [51] Jiang J L, Xiong J, Wang Z N et al. Quasi-distributed fiber-optic acoustic sensing with MIMO technology[J]. IEEE Internet of Things Journal, 8, 15284-15291(2021).

    [52] Arbel N, Shiloh L, Levanon N et al. Quasi-distributed fiber sensing via perfect periodic Legendre codes[C], T1.2(2021).

    [53] Arbel N, Tomarov D, Abadi A et al. Ultrahigh scan-rate quasi-distributed acoustic sensing system using array match interrogation[J]. Optics Express, 30, 11647-11659(2022).

    [54] Deng Z W, Xu R B, Wang Y Y et al. Twenty-fold enlargement of QDAS bandwidth utilizing orthogonal codes on the same carrier[C], F2.5(2022).

    [55] Deng Z W, Wan A C, Xu R B et al. Quasi-distributed acoustic sensing based on orthogonal codes and empirical mode decomposition[J]. IEEE Sensors Journal, 23, 24591-24600(2023).

    [56] Zhang B. Application of optical pulse coding technology in phase-sensitive optical time-domain reflectometer[D](2018).

    [57] Golay M. Complementary series[J]. IRE Transactions on Information Theory, 7, 82-87(1961).

    [58] Wu Y. Research on performance improvement of phase-sensitive optical time-domain reflectometer based on optical pulse coding[D](2020).

    [59] Liu C Y, Deng Z W, Wang Y Y et al. Golay coding Φ-OTDR with distributed frequency-drift compensation[J]. IEEE Sensors Journal, 22, 12894-12899(2022).

    [60] Jiang J L. Phase-sensitive optical time domain reflectometer based on new orthogonal signal[D](2022).

    [61] Deng Z W. Research on quasi-distributed acoustic wave sensing technology based on orthogonal polyphase code[D](2023).

    Tools

    Get Citation

    Copy Citation Text

    Chunye Liu, Anchi Wan, Yongxin Liang, Jialin Jiang, Yue Wu, Bin Zhang, Ziwen Deng, Yunjiang Rao, Zinan Wang. Research Progress of Phase-Sensitive Optical Time Domain Reflectometry Based on Optical Pulse Coding Technique[J]. Acta Optica Sinica, 2024, 44(1): 0106012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Sep. 6, 2023

    Accepted: Dec. 7, 2023

    Published Online: Jan. 11, 2024

    The Author Email: Wang Zinan (znwang@uestc.edu.cn)

    DOI:10.3788/AOS231531

    CSTR:32393.14.AOS231531

    Topics