Frontiers of Optoelectronics, Volume. 15, Issue 1, 12200(2022)
Dual-polarization multiplexing amorphous Si:H grating couplers for silicon photonic transmitters in the photonic BiCMOS backend of line
[1] [1] Zhou, X., Urata, R., Liu, H.: Beyond 1 Tb/s intra-data center interconnect technology: IM-DD or coherent? J. Lightwave Technol. 38(2), 475–484 (2020)
[2] [2] NeoPhotonics. White Paper—Photonic IC Enabled Coherent Optical Systems 3. Zhou, J., Wang, J., Zhu, L., Zhang, Q.: Silicon photonics for 100 Gbaud. J. Lightwave Technol. 39(4), 857–867 (2021)
[3] [3] Mekis, A., Gloeckner, S., Masini, G., Narasimha, A., Pinguet, T., Sahni, S., Dobbelaere, P.D.: A grating-coupler-enabled CMOS photonics platform. IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011)
[4] [4] Zimmermann, L., Knoll, D., Kroh, M., Lischke, S., Petousi, D., Winzer, G., Yamamoto, Y.: BiCMOS silicon photonics platform. In: Optical Fiber Communication Conference (OFC) 2015, Los Angeles, CA, USA (2015)
[5] [5] Rakowski, M., Meagher, C., Nummy, K., Aboketaf, A., Ayala, J., Bian, Y., Harris, B., Mclean, K., McStay, K., Sahin, A., Medina, L., Peng, B., Sowinski, Z., Stricker, A., Houghton, T., Hedges, C., Giewont, K., Jacob, A., Letavic, T., Riggs, D., Yu, A., Pellerin J.: 45 nm CMOS-silicon photonics monolithic technology (45CLO) for next-generation, low power and high speed optical interconnects. In: Optical Fiber Communication Conference (OFC) 2020, San Diego, CA, USA (2020)
[6] [6] Zhou, X., Urata, R., Liu, H.: Beyond 1 Tb/s datacenter interconnect technology: challenges and solutions. In: Optical Fiber Communication Conference (OFC) 2019, San Diego, CA, USA (2019)
[7] [7] Petousi, D., Zimmermann, L., Voigt, K., Petermann, K.: Performance limits of depletion-type silicon Mach-Zehnder modulators for telecom applications. J. Lightwave Technol. 31(22), 3556–3562 (2013)
[8] [8] Petousi, D., Zimmermann, L., Gajda, A., Kroh, M., Voigt, K., Winzer, G., Tillack, B., Petermann, K.: Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si Mach-Zehnder modulators for high-speed operation. IEEE J. Sel. Top. Quantum Electron. 21(4), 199–206 (2015)
[9] [9] Alexander, K., George, J.P., Verbist, J., Neyts, K., Kuyken, B., Van Thourhout, D., Beeckman, J.: Nanophotonic Pockels modulators on a silicon nitride platform. Nat. Commun. 9(1), 3444 (2018)
[10] [10] Eltes, F., Mai, C., Caimi, D., Kroh, M., Popoff, Y., Winzer, G., Petousi, D., Lischke, S., Ortmann, J.E., Czornomaz, L., Zimmermann, L., Fompeyrine, J., Abel, S.: A BaTiO3-based electro-optic Pockels modulator monolithically integrated on an advanced silicon photonics platform. J. Lightwave Technol. 37(5), 1456–1462 (2019)
[11] [11] Rao, A., Patil, A., Rabiei, P., Honardoost, A., DeSalvo, R., Paolella, A., Fathpour, S.: High-performance and linear thinfilm lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz. Opt. Lett. 41(24), 5700–5703 (2016)
[12] [12] Weigel, P.O., Zhao, J., Fang, K., Al-Rubaye, H., Trotter, D., Hood, D., Mudrick, J., Dallo, C., Pomerene, A.T., Starbuck, A.L., DeRose, C.T., Lentine, A.L., Rebeiz, G., Mookherjea, S.: Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt. Express 26(18), 23728–23739 (2018)
[13] [13] Boynton, N., Cai, H., Gehl, M., Arterburn, S., Dallo, C., Pomerene, A., Starbuck, A., Hood, D., Trotter, D.C., Friedmann, T., DeRose, C.T., Lentine, A.: A heterogeneously integrated silicon photonic/lithium niobate travelling wave electro-optic modulator. Opt. Express 28(2), 1868–1884 (2020)
[14] [14] Takei, R., Maegami, Y., Omoda, E., Sakakibara, Y., Mori, M., Kamei, T.: Low-loss and low wavelength-dependence vertical interlayer transition for 3D silicon photonics. Opt. Express 23(14), 18602–18610 (2015)
[15] [15] Takei, R., Manako, S., Omoda, E., Sakakibara, Y., Mori, M., Kamei, T.: Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect. Opt. Express 22(4), 4779–4788 (2014)
[16] [16] Sherwood-Droz, N., Lipson, M.: Scalable 3D dense integration of photonics on bulk silicon. Opt. Express 19(18), 17758–17765 (2011)
[17] [17] Ong, E.W., Fahrenkopf, N.M., Coolbaugh, D.D.: SiNx bilayer grating coupler for photonic systems. OSA Continuum 1(1), 13–25 (2018)
[18] [18] Zhu, S., Lo, G.Q.: Vertically stacked multilayer photonics on Bulk silicon toward three-dimensional integration. J. Lightwave Technol. 34(2), 386–392 (2016)
[19] [19] Kang, J.H., Atsumi, Y., Hayashi, Y., Suzuki, J., Kuno, Y., Amemiya, T., Nishiyama, N., Arai, S.: Amorphous-silicon interlayer grating couplers with metal mirrors toward 3-D interconnection. IEEE J. Sel. Top. Quantum Electron. 20(4), 317–322 (2014)
[20] [20] Takei, R.: Amorphous silicon photonics. In: Crystalline and noncrystalline solids, InTech, 2016. https:// doi. org/ 10. 5772/ 63374
[21] [21] Knoll, D., Lischke, S., Barth, R., Zimmermann, L., Heinemann, B., Rucker, H., Mai, C., Kroh, M., Peczek, A., Awny, A., Ulusoy, C., Trusch, A., Kruger, A., Drews, J., Fraschke, M., Schmidt, D., Lisker, M., Voigt, K., Krune, E., Mai, A.: High-performance photonic BiCMOS process for the fabrication of high-bandwidth electronic-photonic integrated circuits. In: 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA (2015)
[22] [22] Knoll, D., Lischke, S., Awny, A., Kroh, M., Krune, E., Mai, C., Peczek, A., Petousi, D., Simon, S., Voigt, K., Winzer, G., Zimmermann, L.: BiCMOS silicon photonics platform for fabrication of high-bandwidth electronic-photonic integrated circuits. In: 2016 IEEE 16th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Austin, TX, USA (2016)
[23] [23] Marchetti, R., Lacava, C., Carroll, L., Gradkowski, K., Minzioni, P.: Coupling strategies for silicon photonics integrated chips. Photon. Res. 7(2), 201–239 (2019)
[24] [24] Mitze, T., Schnarrenberger, M., Zimmermann, L., Bruns, J., Fidorra, F., Janiak, K., Kreissl, J., Fidorra, S., Heidrich, H., Petermann, K.: CWDM transmitter module based on hybrid integration. IEEE J. Sel. Top. Quantum Electron. 12(5), 983–987 (2006)
[25] [25] Duprez, H., Descos, A., Ferrotti, T., Sciancalepore, C., Jany, C., Hassan, K., Seassal, C., Menezo, S., Ben, B.B.: 1310 nm hybrid InP/InGaAsP on silicon distributed feedback laser with high sidemode suppression ratio. Opt. Express 23(7), 8489–8497 (2015)
[26] [26] Shin, D., Cha, J., Kim, S., Shin, Y., Cho, K., Ha, K., Jeong, G., Hong, H., Lee, K., Kang, H.K.: O-band DFB laser heterogeneously integrated on a bulk-silicon platform. Opt. Express 26(11), 14768–14774 (2018)
[27] [27] Georgieva, G., Petermann, K.: Analytical and numerical investigation of silicon photonic 2D grating couplers with a waveguidetograting shear angle. In: 2018 Progress in Electromagnetics Research Symposium (PIERS), Toyama, Japan (2018)
[28] [28] Georgieva, G., Voigt, K., Mai, C., Seiler, P.M., Petermann, K., Zimmermann, L.: Cross-polarization effects in sheared 2D grating couplers in a photonic BiCMOS technology. Jpn. J. Appl. Phys. 59, SOOB03 (2020)
[29] [29] Georgieva, G., Voigt, K., Seiler, P.M., Mai, C., Petermann, K., Zimmermann, L.: A physical origin of cross-polarization and higher-order modes in two-dimensional (2D) grating couplers and the related device performance limitations. J. Phys. 3(3), 035002 (2021)
[30] [30] Georgieva, G., Seiler, P. M., Mai, C., Petermann, K., Zimmermann, L.: 2D grating coupler induced polarization crosstalk in coherent transceivers for next generation data center interconnects. In: The Optical Fiber Communication Conference (OFC) (2021)
[31] [31] Seiler, P.M., Georgieva, G., Winzer, G., Peczek, A., Voigt, K., Lischke, S., Fatemi, A., Zimmermann, L.: Toward coherent O-band data center interconnects. Frontiers of Optoelectronics 14(4), 414–425 (2021)
[32] [32] Carroll, L., Gerace, D., Cristiani, I., Menezo, S., Andreani, L.C.: Broad parameter optimization of polarization-diversity 2D grating couplers for silicon photonics. Opt. Express 21(18), 21556–21568 (2013)
[33] [33] Luo, Y., Nong, Z., Gao, S., Huang, H., Zhu, Y., Liu, L., Zhou, L., Xu, J., Liu, L., Yu, S., Cai, X.: Low-loss two-dimensional silicon photonic grating coupler with a backside metal mirror. Opt. Lett. 43(3), 474–477 (2018)
[34] [34] Peczek, A., Mai, C., Winzer, G., Zimmermann, L.: Comparison of cut-back method and optical backscatter reflectometry for wafer level waveguide characterization. In: 2020 IEEE 33rd International Conference on Microelectronic Test Structures (ICMTS), Edinburgh, UK (2020)
Get Citation
Copy Citation Text
Galina Georgieva, Christian Mai, Pascal M. Seiler, Anna Peczek, Lars Zimmermann. Dual-polarization multiplexing amorphous Si:H grating couplers for silicon photonic transmitters in the photonic BiCMOS backend of line[J]. Frontiers of Optoelectronics, 2022, 15(1): 12200
Category: RESEARCH ARTICLE
Received: Jul. 30, 2021
Accepted: Nov. 15, 2021
Published Online: Aug. 25, 2022
The Author Email: Galina Georgieva (galina.georgieva@tu-berlin.de)