Photonics Research, Volume. 9, Issue 5, 649(2021)
Over 255 mW single-frequency fiber laser with high slope efficiency and power stability based on an ultrashort Yb-doped crystal-derived silica fiber
[1] H. R. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, T. J. Kippenberg. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 13, 94-102(2017).
[2] C. Dixneuf, G. Guiraud, Y. V. Bardin, Q. Rosa, M. Goeppner, A. Hilico, C. Pierre, J. Boullet, N. Traynor, G. Santarelli. Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm. Opt. Express, 28, 10960-10969(2020).
[3] F. Wellmann, M. Steinke, F. Meylahn, N. Bode, B. Willke, L. Overmeyer, J. Neumann, D. Kracht. High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors. Opt. Express, 27, 28523-28533(2019).
[4] C. Y. Qin, K. P. Jia, Q. Y. Li, T. Tan, X. H. Wang, Y. H. Guo, S. W. Huang, Y. Liu, S. N. Zhu, Z. D. Xie, Y. J. Rao, B. C. Yao. Electrically controllable laser frequency combs in graphene-fibre microresonators. Light Sci. Appl., 9, 185(2020).
[5] C. Spiegelberg, J. H. Geng, Y. D. Hu, Y. Kaneda, S. B. Jiang, N. Peyghambarian. Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003). J. Lightwave Technol., 22, 57-62(2004).
[6] O. V. Butov, A. A. Rybaltovsky, A. P. Bazakutsa, K. M. Golant, M. Y. Vyatkin, S. M. Popov, Y. K. Chamorovskiy. 1030 nm Yb3+ distributed feedback short cavity silica-based fiber laser. J. Opt. Soc. Am. B, 34, A43-A48(2017).
[7] M. J. Yin, S. H. Huang, B. L. Lu, H. W. Chen, Z. Y. Ren, J. T. Bai. Slope efficiency over 30% single-frequency ytterbium-doped fiber laser based on Sagnac loop mirror filter. Appl. Opt., 52, 6799-6803(2013).
[8] Z. K. Wang, J. M. Shang, K. L. Mu, Y. J. Qiao, S. Yu. Single-longitudinal-mode fiber laser with an ultra-narrow linewidth and extremely high stability obtained by utilizing a triple-ring passive subring resonator. Opt. Laser Technol., 130, 106329(2020).
[9] Y. Kaneda, C. Spiegelberg, J. H. Geng, Y. D. Hu, T. Luo, J. F. Wang, S. B. Jiang. 200-mW, narrow-linewidth 1064.2-nm Yb-doped fiber laser. Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, CThO3(2004).
[10] S. H. Xu, Z. M. Yang, W. N. Zhang, X. M. Wei, Q. Qian, D. D. Chen, Q. Y. Zhang, S. X. Shen, M. Y. Peng, J. R. Qiu. 400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser. Opt. Lett., 36, 3708-3710(2011).
[11] S. L. Kang, T. Qiao, X. J. Huang, C. S. Yang, X. F. Liu, J. R. Qiu, Z. M. Yang, G. P. Dong. Enhanced CW lasing and Q-switched pulse generation enabled by Tm3+-doped glass ceramic fibers. Adv. Opt. Mater., 9, 2001774(2020).
[12] G. W. Tang, G. Q. Qian, W. Lin, W. L. Wang, Z. G. Shi, Y. Yang, N. L. Dai, Q. Qian, Z. M. Yang. Broadband 2 μm amplified spontaneous emission of Ho/Cr/Tm:YAG crystal derived all-glass fibers for mode-locked fiber laser applications. Opt. Lett., 44, 3290-3293(2019).
[13] Z. J. Liu, Y. Y. Xie, Z. H. Cong, Z. G. Zhao, Z. X. Jia, C. Z. Li, G. S. Qin, S. Wang, X. B. Gao, X. B. Shao, X. Y. Zhang. 110 mW single-frequency Yb: YAG crystal-derived silica fiber laser at 1064 nm. Opt. Lett., 44, 4307-4310(2019).
[14] X. C. Guan, Q. L. Zhao, W. Lin, T. Y. Tan, C. S. Yang, P. F. Ma, Z. M. Yang, S. H. Xu. High-efficiency and high-power single-frequency fiber laser at 1.6 μm based on cascaded energy-transfer pumping. Photon. Res., 8, 414-420(2020).
[15] P. D. Dragic, J. Ballato, T. Hawkins, P. Foy. Feasibility study of Yb: YAG-derived silicate fibers with large Yb content as gain media. Opt. Mater., 34, 1294-1298(2012).
[16] C. Z. Li, Z. X. Jia, Z. H. Cong, Z. J. Liu, X. Y. Zhang, G. S. Qin, W. P. Qin. Gain characteristics of ytterbium-doped SiO2–Al2O3–Y2O3 fibers. Laser Phys., 29, 055804(2019).
[17] Y. F. Wang, Y. M. Zhang, J. K. Cao, L. P. Wang, X. L. Peng, J. P. Zhong, C. S. Yang, S. H. Xu, Z. M. Yang, M. Y. Peng. 915 nm all-fiber laser based on novel Nd-doped high alumina and yttria glass @ silica glass hybrid fiber for the pure blue fiber laser. Opt. Lett., 44, 2153-2156(2019).
[18] Y. M. Zhang, G. Q. Qian, X. S. Xiao, X. L. Tian, X. Q. Ding, Z. J. Ma, L. Y. Yang, H. T. Guo, S. H. Xu, Z. M. Yang, J. R. Qiu. The preparation of yttrium aluminosilicate (YAS) glass fiber with heavy doping of Tm3+ from polycrystalline YAG ceramics. J. Am. Ceram. Soc., 101, 4627-4633(2018).
[19] S. P. Zheng, J. Li, C. L. Yu, Q. L. Zhou, D. P. Chen. Preparation and characterizations of Nd:YAG ceramic derived silica fibers drawn by post-feeding molten core approach. Opt. Express, 24, 24248-24254(2016).
[20] Y. M. Zhang, G. Q. Qian, X. S. Xiao, X. L. Tian, Z. Chen, J. P. Zhong, Z. J. Ma, H. T. Guo, S. H. Xu, Z. M. Yang, J. R. Qiu. A yttrium aluminosilicate glass fiber with graded refractive index fabricated by melt-in-tube method. J. Am. Ceram. Soc., 101, 1616-1622(2018).
[21] P. Dragic, P. C. Law, J. Ballato, T. Hawkins, P. Foy. Brillouin spectroscopy of YAG-derived optical fibers. Opt. Express, 18, 10055-10067(2010).
[22] P. D. Dragic, Y. S. Liu, J. Ballato, T. Hawkins, P. Foy. YAG-derived fiber for high-power narrow-linewidth fiber lasers. Proc. SPIE, 8237, 82371E(2012).
[23] S. P. Zheng, J. Li, C. L. Yu, Q. L. Zhou, L. L. Hu, D. P. Chen. Preparation and characterizations of Yb:YAG-derived silica fibers drawn by on-line feeding molten core approach. Ceram. Int., 43, 5837-5841(2017).
[24] Y. M. Zhang, W. W. Wang, J. Li, X. S. Xiao, Z. J. Ma, H. T. Guo, G. P. Dong, S. H. Xu, J. R. Qiu. Multi-component yttrium aluminosilicate (YAS) fiber prepared by melt-in-tube method for stable single-frequency laser. J. Am. Ceram. Soc., 102, 2551-2557(2019).
[25] Y. Y. Xie, Z. J. Liu, Z. H. Cong, Z. G. Qin, S. Wang, Z. X. Jia, C. Z. Li, G. S. Qin, X. B. Gao, X. Y. Zhang. All-fiber-integrated Yb:YAG-derived silica fiber laser generating 6 W output power. Opt. Express, 27, 3791-3798(2019).
[26] Y. Wan, J. X. Wen, Y. H. Dong, C. Jiang, M. Jia, F. Z. Tang, N. Chen, Z. W. Zhao, S. J. Huang, F. F. Pang, T. Y. Wang. Exceeding 50% slope efficiency DBR fiber laser based on a Yb-doped crystal-derived silica fiber with high gain per unit length. Opt. Express, 28, 23771-23783(2020).
[27] H. Noel, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, U. J. Gibson. CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss. Adv. Opt. Mater., 4, 1004-1008(2016).
[28] D. E. McCumber. Einstein relations connecting broadband emission and absorption spectra. Phys. Rev., 136, A954-A957(1964).
[29] F. B. Slimen, S. X. Chen, J. Lousteau, Y. M. Jung, N. White, S. Alam, D. J. Richardson, F. Poletti. Highly efficient Tm3+ doped germanate large mode area single mode fiber laser. Opt. Mater. Express, 9, 4115-4125(2019).
[30] P. Barua, E. H. Sekiya, K. Saito, A. J. Ikushima. Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass. J. Non-Cryst. Solids, 354, 4760-4764(2008).
[31] W. Zhang, J. T. Liu, G. Y. Zhou, C. M. Xia, J. L. Wu, Y. Chen, X. L. Cang, Z. Y. Hou. Analysis on the optical properties for the ytterbium doped silica glasses prepared by laser sintering technology. Opt. Quantum Electron., 49, 27(2017).
[32] H. X. Li, J. Lousteau, W. N. MacPherson, X. Jiang, H. T. Bookey, J. S. Barton, A. Jha, A. K. Kar. Thermal sensitivity of tellurite and germanate optical fibers. Opt. Express, 15, 8857-8863(2007).
[33] Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, M. V. Andrés. Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings. Opt. Express, 14, 6394-6399(2006).
[34] S. H. Xu, C. Li, W. N. Zhang, S. P. Mo, C. S. Yang, X. M. Wei, Z. M. Feng, Q. Qian, S. X. Shen, M. Y. Peng, Q. Y. Zhang, Z. M. Yang. Low noise single-frequency single-polarization ytterbium-doped phosphate fiber laser at 1083 nm. Opt. Lett., 38, 501-503(2013).
[35] Z. M. Feng, S. P. Mo, S. H. Xu, X. Huang, Z. R. Zhong, C. S. Yang, C. Li, W. N. Zhang, D. D. Chen, Z. M. Yang. A compact linearly polarized low-noise single-frequency fiber laser at 1064 nm. Appl. Phys. Express, 6, 052701(2013).
[36] B. Sun, J. Jia, J. Huang, X. Q. Zhang, J. T. Bai. A 1030 nm single-frequency distributed Bragg reflector Yb-doped silica fiber laser. Laser Phys., 27, 105105(2017).
[37] B. Sun, X. Q. Zhang, J. Jia. Single-frequency fiber laser at 1030 nm based on gain bandwidth compression. Laser Phys. Lett., 16, 065101(2019).
[38] W. Guan, J. R. Marciante. Single-polarisation, single-frequency, 2 cm ytterbium-doped fibre laser. Electron. Lett., 43, 558-560(2007).
[39] Y. F. Wang, J. M. Wu, Q. L. Zhao, W. W. Wang, J. Zhang, Z. M. Yang, S. H. Xu, M. Y. Peng. Single-frequency DBR Nd-doped fiber laser at 1120 nm with a narrow linewidth and low threshold. Opt. Lett., 45, 2263-2266(2020).
[40] G. P. Agrawal. Line narrowing in a single-mode injection laser due to external optical feedback. IEEE J. Quantum Electron., 20, 468-471(1984).
[41] Z. P. Huang, H. Q. Deng, C. S. Yang, Q. L. Zhao, Y. F. Zhang, Y. N. Zhang, Z. M. Feng, Z. M. Yang, M. Y. Peng, S. H. Xu. Self-injection locked and semiconductor amplified ultrashort cavity single-frequency Yb3+-doped phosphate fiber laser at 978 nm. Opt. Express, 25, 1535-1541(2017).
Get Citation
Copy Citation Text
Ying Wan, Jianxiang Wen, Chen Jiang, Fengzai Tang, Jing Wen, Sujuan Huang, Fufei Pang, Tingyun Wang, "Over 255 mW single-frequency fiber laser with high slope efficiency and power stability based on an ultrashort Yb-doped crystal-derived silica fiber," Photonics Res. 9, 649 (2021)
Category: Fiber Optics and Optical Communications
Received: Jan. 6, 2021
Accepted: Feb. 11, 2021
Published Online: Apr. 19, 2021
The Author Email: Jianxiang Wen (wenjx@shu.edu.cn)