Acta Optica Sinica, Volume. 38, Issue 9, 0911005(2018)

Quick Registration Algorithm of Point Clouds Using Structure Feature

Chang Wang1、*, Qin Shu1、*, Yunxiu Yang2, and Wei Chen2
Author Affiliations
  • 1 College of Electrical Engineering and Information Technology, Sichuan University, Chengdu, Sichuan 610065, China
  • 2 Southwest Institute of Technical Physics, Chengdu, Sichuan 610041, China
  • show less
    Figures & Tables(12)
    Schematic of initial registration
    Closest point to S point
    Initial state of the point clouds
    Point cloud Bunny registration results. (a) Algorithm in Ref. [4]; (b) GA+ICP algorithm; (c) GA+Scale-ICP algorithm; (d) QRSF algorithm
    Point cloud Horse registration results. (a) Algorithm in Ref. [4]; (b) GA+ICP algorithm; (c) GA+Scale-ICP algorithm; (d) QRSF algorithm
    Point cloud registration with random missing data points of (a) 5%, (b) 10%, (c) 15%, (d) 20% and (e) 25%
    Data collected by scanner. (a) Mechanical part A; (b) mechanical part B
    Registration after random loss of 20% data points. (a) Registration by ICP algorithm; (b) registration by Scale-ICP algorithm; (c) registration by QRSF algorithm
    • Table 1. Root mean square errors of different registration algorithms

      View table

      Table 1. Root mean square errors of different registration algorithms

      Point cloudERMS /mm
      Algorithm in Ref.[4]GA+ICPGA+Scale-ICPQRSF
      Bunny1.011×10-140.8955.01×10-134.455×10-15
      Horse5.549×10-171.759×10-165.201×10-173.655×10-17
    • Table 2. Registration time using different algorithms with different random lost data points

      View table

      Table 2. Registration time using different algorithms with different random lost data points

      AlgorithmRegistration time with different random lost data points /s
      5%10%15%20%25%
      QRSF0.2110.2290.2490.2550.259
      Scale-ICP10.93111.91011.31311.71412.452
      ICP102.42096.04484.13577.885111.645
    • Table 3. Registration time using different algorithms

      View table

      Table 3. Registration time using different algorithms

      Point cloudAlgorithmRegistration time with different random lost data points /s
      5%10%15%20%25%
      ICP496.511439.2621324.627879.707822.785
      AScale-ICP15.01518.22616.95015.36517.008
      QRSF0.6290.5830.7790.5530.618
      ICP2212.461044.443348.1122454.9772597.634
      BScale-ICP91.666100.552147.12244.474113.152
      QRSF1.7071.8701.6701.7391.313
    • Table 4. Root mean square error of registration after missing data at different ratios

      View table

      Table 4. Root mean square error of registration after missing data at different ratios

      Point cloudAlgorithmERMS,min after missing data at different ratios /mm
      5%10%15%20%25%
      ICP7.50×10-123.37×10-121.204×10-126.57×10-129.65×10-12
      AScale-ICP0.2260.2520.4240.5770.687
      QRSF3.14×10-145.35×10-143.74×10-142.99×10-143.49×10-14
      ICP7.22×10-124.21×10-124.10×10-124.45×10-144.12×10-12
      BScale-ICP0.3330.7361.461.962.42
      QRSF4.14×10-141.41×10-129.19×10-144.64×10-142.49×10-14
    Tools

    Get Citation

    Copy Citation Text

    Chang Wang, Qin Shu, Yunxiu Yang, Wei Chen. Quick Registration Algorithm of Point Clouds Using Structure Feature[J]. Acta Optica Sinica, 2018, 38(9): 0911005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Mar. 22, 2018

    Accepted: May. 2, 2018

    Published Online: May. 9, 2019

    The Author Email:

    DOI:10.3788/AOS201838.0911005

    Topics