The Journal of Light Scattering, Volume. 31, Issue 3, 215(2019)

Research Progress on the Preparation of Chiral Plasmonic Nanocrystals

ZHENG Guangchao1, XIE Juan1、*, WANG Shenli2, and LIANG Erjun1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(67)

    [1] [1] Sun M T,Zhang Z L,Wang P J,et al.Remoetely excited Raman optical activity using chiral plasmon propagation in Ag wires[J].Light Sci Appl,2013,2:e112.

    [2] [2] Zhou C,Duan X Y,Liu N.DNA-Nanotechnology-Enabled Chiral Plasmonics: from static to dynamic[J].Accounts Chem Res,2017,50:2906.

    [3] [3] Zheng G C,Wang J,Kong L T,et al.Cellular-like gold nanofeet: synthesis,functionalization,and surface enhanced fluorescence detection for mercury contaminations[J].Plasmonics,2012,7:487.

    [4] [4] Li D D,Zheng G C,Jia H W,et al.Direct readout SERS multiplex sensing of pesticides via gold nanoplate-in-shell monolayer substrate[J].Colloid Surface A,2014,451:48.

    [5] [5] Zheng G C,De Marchi S,Lopez-Puente V,et al.Encapsulation of single plasmonic nanoparticles within ZIF-8 and SERS analysis of the MOF flexibility[J].Small,2016,12:3935.

    [9] [9] Polavarapu L,Mourdukoudis S,Pastoriza-Santos I,et al.Nanocrystal engineering of noble metals and metal chalcogenides: controlling the morphology,composition and crystallinity[J].Crystengcomm,2015,17:3727.

    [10] [10] Zheng G C,Polavarapu L,Liz-Marzan L M,et al.Gold nanoparticle-loaded filter paper: a recyclable dip-catalyst for real-time reaction monitoring by surface enhanced Raman scattering[J].Chem Commun 2015,51:4572.

    [15] [15] Zhao Y,Yang Y X,Zhao J,et al.Dynamic chiral nanoparticle assemblies and specific chiroplasmonic analysis of cancer cells[J].Advanced materials,2016,28:4877.

    [16] [16] Jiang S,Chekini M,Qu Z B,et al.Chiral ceramic nanoparticles and peptide catalysis[J].J Am Chem Soc,2017,139:13701.

    [17] [17] Lee H E,Ahn H Y,Mun J,et al.Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles[J].Nature,2018,556:360.

    [18] [18] Ma W,Xu L G,De Moura A F,et al.Chiral inorganic nanostructures[J].Chem Rev 2017,117:8041.

    [19] [19] Wu X L,Hao C L,Kumar J,et al.Environmentally responsive plasmonic nanoassemblies for biosensing[J].Chem Soc Rev,2018,47:4677.

    [20] [20] Gregory Schaaff T,Whetten Robert L.Giant gold-Glutathione cluster compounds:? intense optical activity in metal-based transitions[J].J.Phys.Chem.B,2000,104:2630.

    [21] [21] Kumar J,Liz-Marzan L M.Recent advances in chiral plasmonics-towards biomedical applications[J].B Chem Soc Jpn,2019,92:30.

    [22] [22] Han B,Zhu Z N,Li Z T,et al.Conformation modulated optical activity enhancement in chiral cysteine and Au nanorod assemblies[J].J Am Chem Soc,2014,136:16104.

    [23] [23] Lu J,Chang Y X,Zhang N N,et al.Chiral plasmonic nanochains via the self-Assembly of gold nanorods and helical glutathione oligomers facilitated by cetyltrimethylammonium bromide micelles[J].Acs Nano 2017,11:3463.

    [24] [24] Ben-Moshe A,Govorov A O,Markovich G.Enantioselective synthesis of intrinsically chiral mercury sulfide nanocrystals[J].Angew Chem Int Edit,2013,52:1275.

    [25] [25] Wang X A,Tang Z Y.Circular dichroism studies on plasmonic nanostructures[J].Small,2017,13:1601115.

    [26] [26] Li D D,Wang J,Zheng G C,et al.A highly active SERS sensing substrate: core-satellite assembly of gold nanorods/nanoplates[J].Nanotechnology,2013,24:235502.

    [27] [27] Cortes E,Xie W,Cambiasso J,et al.Plasmonic hot electron transport drives nano-localized chemistry[J].Nat Commun,2017,8:4889.

    [28] [28] Govorov A O,Fan Z Y,Hernandez P,et al.Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement,dipole interactions,and dielectric effects.Nano Lett,2010,10:1374.

    [29] [29] Hentschel M,Schaferling M,Duan X Y,et al.Chiral plasmonics[J].Sci Adv,2017,3:e1602735.

    [30] [30] Tian X R,Fang Yr,Sun M T.Formation of enhanced uniform chiral fields in symemetric dimer nanostructures[J].SCI REP,2015,5:17534.

    [31] [31] Grzelczak M,Perez-Juste J,Mulvaney P,et al.Shape control in gold nanoparticle synthesis[J].Chem Soc Rev,2008,37:1783.

    [32] [32] Pastoriza-Santos I,Kinnear C,Perez-Juste,et al.Plasmonic polymer nanocomposites[J].Nat Rev Mater,2018,3:375.

    [33] [33] Xu L G,Gao Y F,Kuang H,et al.MicroRNA-directed intracellular self-assembly of chiral nanorod dimers[J].Angew Chem Int Edit,2018,57:10544.

    [34] [34] Wu X L,Xu L G,Liu L Q,et al.Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis[J].J Am Chem Soc,2013,135:18629.

    [35] [35] Zhao Y,Xu L G,Ma W, et al.Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection[J].Nano Lett,2014,14:3908.

    [36] [36] Gao F L,Sun M Z,Ma W,et al.Singlet oxygen generating agent by chirality-dependent plasmonic shell-satellite nanoassembly[J].Adv Mater,2017,29:1606864.

    [37] [37] Zhu Z N,Liu W J,Li Z T,et al.Manipulation of collective optical activity in one-dimensional plasmonic assembly[J].Acs Nano,2012,6:2326.

    [38] [38] Funck T,Nicoli F,Kuzyk A,et al.Sensing picomolar concentrations of RNA using switchable plasmonic chirality[J].Angew Chem Int Edit,2018,57:13495.

    [39] [39] Kuzyk A,Schreiber R,Zhang H,et al.Reconfigurable 3D plasmonic metamolecules[J].Nature materials,2014,13:862.

    [40] [40] Kuzyk A,Urban M J,Idili A,et al.Selective control of reconfigurable chiral plasmonic metamolecules[J].Sci Adv,2017,3:e1602803.

    [41] [41] Guerrero-Martinez A,Auguie B,Alonso-Gomez J L,et al.Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas[J].Angew Chem Int Edit,2011,50: 5499.

    [42] [42] Cheng J J,Le Saux G,Gao J,et al.GoldHelix: gold nanoparticles forming 3D helical superstructures with controlled morphology and strong chiroptical property[J].Acs Nano,2017,11:3806.

    [43] [43] Tamoto R,Lecomte S,Si S,et al.Gold nanoparticle deposition on silica nanohelices: a new controllable 3D substrate in aqueous suspension for optical sensing[J].J Phys Chem C,2012,116:23143.

    [44] [44] Querejeta-Fernandez A,Chauve G,Methot M,et al.Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals[J].J Am Chem Soc,2014,136:4788.

    [45] [45] Liljestrom V,Ora A,Hassinen J,et al.Cooperative colloidal self-assembly of metal-protein superlattice wires[J].Nat Commun,2017,8:671.

    [46] [46] Merg A D,Boatz J C,Mandal A,et al.Peptide-directed assembly of single-helical gold nanoparticle superstructures exhibiting intense chiroptical activity[J].J Am Chem Soc,2016,138:13655.

    [47] [47] Mokashi-Punekar S,Merg A D,Rosi N L.Systematic adjustment of pitch and particle dimensions within a family of chiral plasmonic gold nanoparticle single helices[J].J Am Chem Soc,2017,139:15043.

    [48] [48] Kuzyk A,Schreiber R,Fan Z Y,et al.DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response[J].Nature,2012,483:311.

    [49] [49] Auguie B,Alonso-Gomez J L,Guerrero-Martinez A,et al.Fingers crossed: optical activity of a chiral dimer of plasmonic Nanorods[J].J Phys Chem Lett,2011,2:846.

    [50] [50] Lan X,Su Z M,Zhou Y D,et al.Programmable supra-assembly of a DNA surface adapter for tunable chiral directional self-Assembly of gold nanorods[J].Angew Chem Int Edit,2017,56:14632.

    [51] [51] Lan X,Lu X X,Shen C Q,et al.Au nanorod helical superstructures with designed chirality[J].J Am Chem Soc,2015,137:457.

    [52] [52] Song C Y,Blaber M G,Zhao G P,et al.Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures[J].Nano Lett,2013,13:3256.

    [53] [53] Kumar J,Erana H,Lopez-Martinez E,et al.Detection of amyloid fibrils in Parkinson's disease using plasmonic chirality[J].P Natl Acad Sci USA,2018,115:3225.

    [54] [54] Edgar C D,Gray D G.Induced circular dichroism of chiral nematic cellulose films[J].Cellulose,2001,8:5.

    [55] [55] Querejeta-Fernandez A,Kopera B,Prado K S,et al.Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles[J].Acs Nano,2015,9:10377.

    [56] [56] Zheng G C,Kaefer K,Mourdikoudis S,et al.Palladium nanoparticle-loaded cellulose paper: a highly efficient,robust,and recyclable self-assembled composite catalytic system[J].J Phys Chem Lett,2015,6:230.

    [57] [57] Schlesinger M,Giese M,Blusch L K,et al.Chiral nematic cellulose-gold nanoparticle composites from mesoporous photonic cellulose[J].Chem Commun,2015,51:530.

    [58] [58] Chu G,Wang X S,Chen T R,et al.Optically tunable chiral plasmonic guest-host cellulose films weaved with long-range ordered silver nanowires[J].Acs Appl Mater Inter,2015,7:11863.

    [59] [59] Campbell M G,Liu Q,Sanders A,et al.Preparation of nanocomposite plasmonic films made from cellulose nanocrystals or mesoporous silica decorated with unidirectionally aligned gold nanorods[J].Materials,2014,7:3021.

    [60] [60] Wu X L,Xu L G,Ma W,et al.Gold core-DNA-silver shell nanoparticles with intense plasmonic chiroptical activities[J].Adv Funct Mater,2015,25:850.

    [61] [61] Hao C L,Xu L G,Ma W,et al.Unusual circularly polarized photocatalytic activity in nanogapped gold-silver chiroplasmonic nanostructures[J].Adv Funct Mater,2015,25:5816.

    [62] [62] Zheng G C,Rao Z Y,Perez J J,et al.Tuning the morphology and chiroptical properties of discrete gold nanorods with amino acids.Angew Chem Int Edit,2018,57:16452.

    [63] [63] Hao C L,Xu L G,Sun M Z,et al.Chirality on hierarchical self-assembly of Au@AuAg yolk-shell nanorods into core-satellite superstructures for biosensing in human cells[J].Adv Funct Mater,2018,28:1802372.

    [64] [64] Guerrero M A,Alonso J L,Auguie B,et al.From individual to collective chirality in metal nanoparticles[J].Nano Today,2011,6:381.

    [65] [65] Jiang W G,Pacella M S,Athanasiadou D,et al.Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate[J].Nat Commun,2017,8:1.

    [66] [66] Nakagawa M,Kawai T.Chirality-controlled syntheses of double-helical Au nanowires[J].J Am Chem Soc,2018,140:4991.

    [67] [67] Wang P P,Yu S J,Ouyang M.Assembled suprastructures of inorganic chiral nanocrystals and hierarchical chirality[J].J Am Chem Soc,2017,139:6070.

    [68] [68] Jiang H J,Zhang L,Chen J,et al.Hierarchical self-assembly of a porphyrin into chiral macroscopic flowers with superhydrophobic and enantioselective property[J].Acs Nano,2017,11:12453.

    [69] [69] Ge J,Lei J D,Zare R N.Protein-inorganic hybrid nanoflowers[J].Nat Nanotechnol,2012,7:428.

    [70] [70] Ben M A,Wolf S G,Bar S M,et al.Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules[J].Nat Commun,2014,5:5302.

    [71] [71] Wang P P,Yu S J,Govorov A O,et al.Cooperative expression of atomic chirality in inorganic nanostructures[J].Nat Commun,2017,8:14312.

    [72] [72] Mark A G,Gibbs J G,Lee T C,et al.Hybrid nanocolloids with programmed three-dimensional shape and material composition[J].Nat Mater,2013,12:802.

    [73] [73] Gansel J K,Thiel M,Rill M S,et al.Gold helix photonic metamaterial as broadband circular polarizer[J].Science,2009,325:1513.

    [74] [74] Gonzalez R G,Liz-Marzan L M.A peptide-guided twist of light[J].Nature,2018,556:313.

    Tools

    Get Citation

    Copy Citation Text

    ZHENG Guangchao, XIE Juan, WANG Shenli, LIANG Erjun. Research Progress on the Preparation of Chiral Plasmonic Nanocrystals[J]. The Journal of Light Scattering, 2019, 31(3): 215

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: reviews

    Received: May. 5, 2019

    Accepted: --

    Published Online: Feb. 11, 2020

    The Author Email: Juan XIE (juanxie@zzu.edu.cn)

    DOI:10.13883/j.issn1004-5929.201903002

    Topics