Journal of Inorganic Materials, Volume. 36, Issue 1, 75(2021)
[1] ROWE D M[M]. CRC Handbook of thermoelectrics., 7-17(1995).
[2] ROYCHOWDHURY S, SAMANTA M, PERUMAL S et al. Germanium chalcogenide thermoelectrics: electronic structure modulation and low lattice thermal conductivity[D]. Chemistry of Materials, 30, 5799-5813(2018).
[3] HONG M, ZOU J, CHEN Z G. Thermoelectric GeTe with diverse degrees of freedom having secured superhigh performance[D]. Advanced Materials, 31, 1-23(2019).
[4] PERUMAL S, ROYCHOWDHURY S, BISWAS K. High performance thermoelectric materials and devices based on GeTe[D]. Journal of Materials Chemistry C, 4, 7520-7536(2016).
[5] OKAMOTO H. Ge-Te(Germanium-Tellurium)[D]. Journal of Phase Equilibria, 21, 496(2000).
[6] LEWIS J E. The defect structure of non-stoichiometric germanium telluride from magnetic susceptibility measurements[D]. Physica Status Solidi (B), 38, 131-140(1970).
[7] ZHENG Z, SU X, DENG R et al. Rhombohedral to cubic conversion of GeTe.
[8] DONG J, SUN F H, TANG H et al. Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance[D]. Energy and Environmental Science, 12, 1396-1403(2019).
[9] [9] [9]PERUMALS, ROYCHOWDHURYS, BISWASK. Reduction of thermal conductivity through nanostructuring enhances the thermoelectric figure of merit in Ge1-xBixTe. Inorganic Chemistry Frontiers, 20163(1):125-132. 1-xBixTe. Inorganic Chemistry Frontiers, 2016, 3(1): 125-132.
PERUMAL S, ROYCHOWDHURY S, BISWAS K. Reduction of thermal conductivity through nanostructuring enhances the thermoelectric figure of merit in Ge1-xBi
[10] PERUMAL S, BELLARE P, SHENOY U S et al. Low thermal conductivity and high thermoelectric performance in Sb and Bi codoped GeTe: complementary effect of band convergence and nanostructuring[D]. Chemistry of Materials, 29, 10426-10435(2017).
[11] PERUMAL S, ROYCHOWDHURY S, NEGI D S et al. High thermoelectric performance and enhanced mechanical stability of P-type Ge1. xS[D]. xTe Chemistry of Materials, 27, 7171-7178(2015).
[12] WUTTIG M, YAMADA N. Phase-change materials for rewriteable data storage[D]. Nature Materials, 6, 824-832(2007).
[13] ROSENTHAL T, SCHNEIDER M N, STIEWE C et al. Real structure and thermoelectric properties of GeTe-rich germanium antimony tellurides[D]. Chemistry of Materials, 23, 4349-4356(2011).
[14] XU X, XIE L, LOU Q et al. Boosting the thermoelectric performance of pseudo-layered Sb2Te3(
GeTe)n
[15] KOSUGA A, NAKAI K, MATSUZAWA M et al. Crystal structure, microstructure, and thermoelectric properties of GeSb6Te10 prepared by spark plasma sintering[D]. Journal of Alloys and Compounds, 618, 463-468(2015).
[16] ROSENTHAL T, URBAN P, NIMMRICH K et al. Enhancing the thermoelectric properties of germanium antimony tellurides by substitution with selenium in compounds Ge
[17] SCHNEIDER M N, BIQUARD X, STIEWE C et al. From metastable to stable modifications -
[18] SHELIMOVA L E, KONSTANTINOV P P, KARPINSKY O G et al. X-ray diffraction study and electrical and thermal transport properties of the
[19] LI J, ZHANG C, FENG Y et al. Effects on phase transition and thermoelectric properties in the Pb-doped GeTe-Bi2Te3 alloys with thermal annealing[D]. Journal of Alloys and Compounds, 808, 151747-151755(2019).
[20] WU D, ZHAO L D, HAO S et al. Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping[D]. Journal of the American Chemical Society, 136, 11412-11419(2014).
[21] LI J, CHEN Z, ZHANG X et al. Electronic origin of the high thermoelectric performance of GeTe among the P-type group IV monotellurides[D]. NPG Asia Materials, 9(2017).
[22] HAZAN E, MADAR N, PARAG M et al. Effective electronic mechanisms for optimizing the thermoelectric properties of GeTe-rich alloys[D]. Advanced Electronic Materials, 1, 1-7(2015).
Get Citation
Copy Citation Text
Xiao YANG, Xianli SU, Yonggao YAN, Xinfeng TANG.
Category: RESEARCH PAPER
Received: May. 12, 2020
Accepted: --
Published Online: Jan. 21, 2021
The Author Email: Xinfeng TANG (tangxf@whut.edu.cn)