Laser & Optoelectronics Progress, Volume. 61, Issue 9, 0906006(2024)

Photonics-Aided Quadruple Frequency W-Band Linear Frequency Modulated Signal Sensing and Ranging

Longwei Pan, Yanyi Wang, Yuxuan Tan, Yuangang Wang, Kaihui Wang, and Wen Zhou*
Author Affiliations
  • Key Laboratory for Information Science of Electromagnetic Waves, Ministry of Education, Department of Communication Science and Engineering, Fudan University, Shanghai 200433, China
  • show less
    References(22)

    [1] Li W Z, Yao J P. Generation of linearly chirped microwave waveform with an increased time-bandwidth product based on a tunable optoelectronic oscillator and a recirculating phase modulation loop[J]. Journal of Lightwave Technology, 32, 3573-3579(2014).

    [2] Gonzalez-Valdes B, Alvarez Y, Mantzavinos S et al. Improving security screening: a comparison of multistatic radar configurations for human body imaging[J]. IEEE Antennas and Propagation Magazine, 58, 35-47(2016).

    [3] Caris M, Stanko S, Johannes W et al. Detection and tracking of micro aerial vehicles with millimeter wave radar[C], 1553-1555(2016).

    [4] Almorox-Gonzalez P, Gonzalez-Partida J T, Burgos-Garcia M et al. Portable high resolution LFM-CW radar sensor in millimeter-wave band[C], 5-9(2007).

    [5] Zhang B, Pi Y M, Li J. Terahertz imaging radar with inverse aperture synthesis techniques: system structure, signal processing, and experiment results[J]. IEEE Sensors Journal, 15, 290-299(2015).

    [6] Asensio-López A, Blanco-del-Campo A, Gismero-Menoyo J et al. High range-resolution radar scheme for imaging with tunable distance limits[J]. Electronics Letters, 40, 1085-1086(2004).

    [7] Li Q H, Yang D, Mu X H et al. Design of the L-band wideband LFM signal generator based on DDS and frequency multiplication[C](2012).

    [8] Pan S L, Yao J P. A frequency-doubling optoelectronic oscillator using a polarization modulator[J]. IEEE Photonics Technology Letters, 21, 929-931(2009).

    [9] Wang S W, Lu Z J, Idrees N et al. Photonic generation and de-chirping of broadband THz linear-frequency-modulated signals[J]. IEEE Photonics Technology Letters, 31, 881-884(2019).

    [10] Liu L M, Dong Z, Pi Y Z et al. Radio-over-fiber system for frequency-quadrupled millimeter-wave generation by external modulator[J]. Chinese Journal of Lasers, 36, 148-153(2009).

    [11] Li X Y, Yu J J, Zhang J W et al. A 400G optical wireless integration delivery system[J]. Optics Express, 21, 18812-18819(2013).

    [12] Li X Y, Yu J J. Photonics-aided 32-Gb/s wireless signal transmission over 1 km at K-band[J]. IEEE Photonics Technology Letters, 29, 1120-1123(2017).

    [13] Wei Y, Wang K H, Zhang Y et al. Real-time transmission of 125.52 Gbit/s PDM-QPSK signal in radio over-fiber system[J]. Acta Optica Sinica, 42, 1506003(2022).

    [14] Wang Y Y, Liu J X, Ding J J et al. Joint communication and radar sensing functions system based on photonics at the W-band[J]. Optics Express, 30, 13404-13415(2022).

    [15] Zha Y, Xue X X, Wang H J et al. Fully compressible wideband radar signal generation with photonic frequency multiplication[C], JW2A.146(2017).

    [16] Li R M, Li W Z, Wen Z L et al. Synthetic aperture radar based on photonic-assisted signal generation and processing[C](2017).

    [17] Zhang Y M, Ye X W, Guo Q S et al. Photonic generation of linear-frequency-modulated waveforms with improved time-bandwidth product based on polarization modulation[J]. Journal of Lightwave Technology, 35, 1821-1829(2017).

    [18] Mei Y, Xu Y X, Chi H et al. Photonic generation of chirped microwave signals with high time-bandwidth product[J]. Optics Communications, 316, 106-110(2014).

    [19] Zhang F Z, Guo Q S, Wang Z Q et al. Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging[J]. Optics Express, 25, 16274-16281(2017).

    [20] Gao H B, Lei C, Chen M H et al. A simple photonic generation of linearly chirped microwave pulse with large time-bandwidth product and high compression ratio[J]. Optics Express, 21, 23107-23115(2013).

    [21] Yao Y, Zhang F Z, Zhang Y et al. Demonstration of ultra-high-resolution photonics-based Ka-band inverse synthetic aperture radar imaging[C](2018).

    [22] Rashidinejad A, Weiner A M. Photonic radio-frequency arbitrary waveform generation with maximal time-bandwidth product capability[J]. Journal of Lightwave Technology, 32, 3383-3393(2014).

    Tools

    Get Citation

    Copy Citation Text

    Longwei Pan, Yanyi Wang, Yuxuan Tan, Yuangang Wang, Kaihui Wang, Wen Zhou. Photonics-Aided Quadruple Frequency W-Band Linear Frequency Modulated Signal Sensing and Ranging[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0906006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Mar. 3, 2023

    Accepted: Apr. 15, 2023

    Published Online: Apr. 2, 2024

    The Author Email: Wen Zhou (zwen@fudan.edu.cn)

    DOI:10.3788/LOP223134

    CSTR:32186.14.LOP223134

    Topics