Acta Optica Sinica, Volume. 41, Issue 1, 0124001(2021)
Spoof Plasmonic Metamaterials
[1] Paul C R. Introduction to electromagnetic compatibility[M]. New York: Wiley(2007).
[2] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).
[3] Anker J N, Hall W P, Lyandres O et al. Biosensing with plasmonic nanosensors[J]. Nature Materials, 7, 442-453(2008).
[6] Hibbins A P, Hendry E, Lockyear M J et al. Prism coupling to ‘designer’ surface plasmons[J]. Optics Express, 16, 20441-20447(2008).
[7] Maier S A. Plasmonics: fundamentals and applications[M]. New York: Springer(2007).
[10] Shen X, Cui T J, Martin-Cano D et al. Conformal surface plasmons propagating on ultrathin and flexible films[J]. PNAS, 110, 40-45(2013).
[15] Juluri B K. Lin S C S, Walker T R, et al. Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index[J]. Optics Express, 17, 2997-3006(2009).
[21] He P H, Zhang H C, Tang W X et al. Shielding spoof surface plasmon polariton transmission lines using dielectric box[J]. IEEE Microwave and Wireless Components Letters, 28, 1077-1079(2018).
[27] Kianinejad A, Chen Z N, Qiu C W. Design and modeling of spoof surface plasmon modes-based microwave slow-wave transmission line[J]. IEEE Transactions on Microwave Theory and Techniques, 63, 1817-1825(2015).
[29] Wang K L, Mittleman D M. Metal wires for terahertz wave guiding[J]. Nature, 432, 376-379(2004).
[31] Wu C J, Cheng Y Z, Wang W Y et al. Ultra-thin and polarization-independent phase gradient metasurface for high-efficiency spoof surface-plasmon-polariton coupling[J]. Applied Physics Express, 8, 122001(2015).
[32] Sun W J, He Q, Sun S L et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations[J]. Light: Science & Applications, 5, e16003(2016).
[35] Kianinejad A, Chen Z N, Qiu C W. Low-loss spoof surface plasmon slow-wave transmission lines with compact transition and high isolation[J]. IEEE Transactions on Microwave Theory and Techniques, 64, 3078-3086(2016).
[37] Zhang H C, Liu S, Shen X P et al. Broadband amplification of spoof surface plasmon polaritons at microwave frequencies[J]. Laser & Photonics Reviews, 9, 83-90(2015).
[40] Gao X, Zhou L, Yu X Y et al. Ultra-wideband surface plasmonic Y-splitter[J]. Optics Express, 23, 23270-23277(2015).
[43] Gao X, Shi J H, Shen X P et al. Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies[J]. Applied Physics Letters, 102, 151912(2013).
[45] Yin J Y, Ren J, Zhang H C et al. Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure[J]. Scientific Reports, 5, 8165(2015).
[48] Xu B Z, Li Z, Liu L L et al. Bandwidth tunable microstrip band-stop filters based on localized spoof surface plasmons[J]. Journal of the Optical Society of America B, 33, 1388-1391(2016).
[49] Liu X Y, Zhu L, Feng Y J. Spoof surface plasmon-based bandpass filter with extremely wide upper stopband[J]. Chinese Physics B, 25, 034101(2016).
[52] Xu J J, Yin J Y, Zhang H C et al. Compact feeding network for array radiations of spoof surface plasmon polaritons[J]. Scientific Reports, 6, 22692(2016).
[56] Shen X P, Cui T J. Ultrathin plasmonic metamaterial for spoof localized surface plasmons[J]. Laser & Photonics Reviews, 8, 137-145(2014).
[57] Liao Z, Luo Y. Fernández-Domínguez A I, et al. High-order localized spoof surface plasmon resonances and experimental verifications[J]. Scientific Reports, 5, 9590(2015).
[59] Huidobro P A, Shen X P, Cuerda J et al. Magnetic localized surface plasmons[J]. Physical Review X, 4, 021003(2014).
[61] Liao Z. Fernández-Domínguez A I, Zhang J J, et al. Homogenous metamaterial description of localized spoof plasmons in spiral geometries[J]. ACS Photonics, 3, 1768-1775(2016).
[62] Zhang J J, Liao Z, Luo Y et al. Spoof plasmon hybridization[J]. Laser & Photonics Reviews, 11, 1600191(2017).
[67] Zhou Y J, Zhang C, Yang L et al. Electronically switchable and tunable bandpass filters based on spoof localized surface plasmons[J]. Journal of the Optical Society of America B, 34, D9(2017).
[69] Zhang H C, Cui T J, Luo Y et al. Active digital spoof plasmonics[J]. National Science Review, 7, 261-269(2020).
Get Citation
Copy Citation Text
Haochi Zhang, Peihang He, Lingyun Niu, Lepeng Zhang, Tiejun Cui. Spoof Plasmonic Metamaterials[J]. Acta Optica Sinica, 2021, 41(1): 0124001
Category: Optics at Surfaces
Received: Jul. 27, 2020
Accepted: Sep. 4, 2020
Published Online: Feb. 23, 2021
The Author Email: Tiejun Cui (tjcui@seu.edu.cn)