Laser & Optoelectronics Progress, Volume. 61, Issue 9, 0906001(2024)
Vortex Mode Amplification Based on Ring-Core Fiber Doped with PbSe Quantum Dots
[1] Willner A E, Huang H, Yan Y et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 7, 66-106(2015).
[2] Pang F F, Xiang L N, Liu H H et al. Review on fiber-optic vortices and their sensing applications[J]. Journal of Lightwave Technology, 39, 3740-3750(2021).
[3] Cheng W C, Zhang W, Jing H Y et al. Orbital angular momentum for wireless communications[J]. IEEE Wireless Communications, 26, 100-107(2019).
[4] Ramachandran S, Kristensen P, Yan M F. Generation and propagation of radially polarized beams in optical fibers[J]. Optics Letters, 34, 2525-2527(2009).
[5] Jung Y M, Kang Q Y, Sidharthan R et al. Optical orbital angular momentum amplifier based on an air-hole erbium-doped fiber[J]. Journal of Lightwave Technology, 35, 430-436(2017).
[6] Zhu G X, Hu Z Y, Wu X et al. Scalable mode division multiplexed transmission over a 10-km ring-core fiber using high-order orbital angular momentum modes[J]. Optics Express, 26, 594-604(2018).
[7] Gregg P, Kristensen P, Ramachandran S. 13.4 km OAM state propagation by recirculating fiber loop[J]. Optics Express, 24, 18938-18947(2016).
[8] Brunet C, Vaity P, Messaddeq Y et al. Design, fabrication and validation of an OAM fiber supporting 36 states[J]. Optics Express, 22, 26117-26127(2014).
[9] Ma J W, Xia F, Chen S et al. Amplification of 18 OAM modes in a ring-core erbium-doped fiber with low differential modal gain[J]. Optics Express, 27, 38087-38097(2019).
[10] Zhang X, Liu J, Chen S et al. Amplification of 14 orbital angular momentum modes in ring-core erbium-doped fiber with high modal gain[J]. Optics Letters, 46, 5647-5650(2021).
[11] Liu S S, Zhang L, Wei H M et al. Study on amplification of ring-core erbium-doped vortex fibers[J]. Chinese Journal of Lasers, 50, 1006003(2023).
[12] Zhao X Y, Qiu Q, Lou Y et al. Study on few-mode erbium-doped fiber with high gain, low DMG and its amplification performance[J]. Laser & Optoelectronics Progress, 60, 0906006(2023).
[13] Dantas N O, Qu F Y, Monte A F G et al. Optical properties of IV-VI quantum dots embedded in glass: size-effects[J]. Journal of Non-Crystalline Solids, 352, 3525-3529(2006).
[14] Pietryga J M, Werder D J, Williams D J et al. Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission[J]. Journal of the American Chemical Society, 130, 4879-4885(2008).
[15] Cheng C, Wu C B. PbS quantum-dot-doped fiber amplifier in NIR S-C-L ultra-broad waveband with low noise[J]. Acta Optica Sinica, 38, 1006006(2018).
[16] Zheng J J, Dong Y H, Pan X P et al. Ultra-wideband and flat-gain optical properties of the PbS quantum dots-doped silica fiber[J]. Optics Express, 27, 37900-37909(2019).
[17] Cheng C, Jiang H L, Ma D W et al. An optical fiber glass containing PbSe quantum dots[J]. Optics Communications, 284, 4491-4495(2011).
[18] Xu Z S, Feng W J, Liu X F et al. Near infrared Ⅳ-Ⅵ semiconductor quantum dot-doped glasses and fibers[J]. Laser & Optoelectronics Progress, 58, 1516018(2021).
[19] Watekar P R, Ju S, Lin A X et al. Linear and nonlinear optical properties of the PbSe quantum dots doped germano-silica glass optical fiber[J]. Journal of Non-Crystalline Solids, 356, 2384-2388(2010).
[20] Xu Z S, Cheng C, Ma D W. Preparation and optical characterization of PbSe quantum dot-doped silicate glass with high concentration[J]. Acta Optica Sinica, 32, 0916002(2012).
[21] Cheng C, Hu N S, Cheng X Y. Experimental realization of a PbSe quantum dot doped fiber amplifier with ultra-bandwidth characteristic[J]. Optics Communications, 382, 470-476(2017).
[22] Zhang L, Huang T H, Ning L N et al. Effects of doped material properties on the emission of quantum dot optical fiber[J]. Optical Fiber Technology, 58, 102305(2020).
[23] Wang W, Gu Q, Chen Q P et al. Investigation of PbSe quantum dot-doped glass fibers with broadband mid-infrared emission[J]. Chinese Journal of Lasers, 49, 0101013(2022).
[24] Yang J H, Xu L M, Shang Y N et al. A PbS-doped optical fiber amplifier based on MCVD[C], S3G. 1(2019).
[25] Henderson G S, Bancroft G M, Fleet M E et al. Raman spectra of gallium and germanium substituted silicate glasses: variations in intermediate range order[J]. American Mineralogist, 70, 946-960(1985).
[26] Henderson G S, Neuville D R, Cochain B et al. The structure of GeO2-SiO2 glasses and melts: a Raman spectroscopy study[J]. Journal of Non-Crystalline Solids, 355, 468-474(2009).
[27] Pawłowski A, Połomska M, Hilczer B et al. Superionic phase transition in Rb3D(SeO4)2 single crystals[J]. Journal of Power Sources, 173, 781-787(2007).
[28] Blackburn J L, Chappell H, Luther J M et al. Correlation between photooxidation and the appearance of Raman scattering bands in lead chalcogenide quantum dots[J]. The Journal of Physical Chemistry Letters, 2, 599-603(2011).
[29] Liu C, Heo J. Lead chalcogenide quantum dot-doped glasses for photonic devices[J]. International Journal of Applied Glass Science, 4, 163-173(2013).
[30] Skurlov I, Sokolova A, Galle T et al. Temperature-dependent photoluminescent properties of PbSe nanoplatelets[J]. Nanomaterials, 10, 2570(2020).
Get Citation
Copy Citation Text
Hengfei Guo, Huimei Wei, Na Chen, Yanhua Dong, Jianxiang Wen, Yana Shang, Zhenyi Chen, Fufei Pang. Vortex Mode Amplification Based on Ring-Core Fiber Doped with PbSe Quantum Dots[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0906001
Category: Fiber Optics and Optical Communications
Received: Apr. 24, 2023
Accepted: May. 26, 2023
Published Online: May. 10, 2024
The Author Email: Yana Shang (ynshang@shu.edu.cn)
CSTR:32186.14.LOP231164