Chinese Journal of Ship Research, Volume. 18, Issue 4, 1(2023)
A review of strong electromagnetic environment protection technology for ship equipment
[31] [31] EPP L, CHAN C, MITTRA R. The study of FSS surfaces with varying surface impedance lumped elements[C] IEEE International Antennas Propagation Symposium, Digest. [S. 1. ]: IEEE, 1989: 1056−1059.
[34] EBRHIMI A, SHEN Z, WITHAYACHUMNANKUL W et al. Varactor-tunable second-order bandpass frequency-selective surface with embedded bias network[J]. IEEE Transactions on Antennas & Propagation, 64, 1672-1680(2016).
[35] MIAS C. Varactor-tunable frequency selective surface with resistive-lumped-element biasing grids[J]. IEEE Microwave & Wireless Components Letters, 15, 570-572(2005).
[36] KIANI G I, BIRD T S. ASK modulator based on switchable FSS for THz applications[J]. Radio Science, 46, 1-8(2011).
[39] MAHMOOD S M, DENIDINI T A. Pattern reconfigurable antenna using a switchable frequency selective surface with improved bandwidth[J]. IEEE Antennas and Wireless Propagation Letters, 15, 1148-1151(2015).
[42] KONG P, YU X W, ZHAO M Y et al. Switchable frequency selective surfaces absorber/reflector for wideband applications[J]. Journal of Electromagnetic Waves & Applications, 29, 1473-1485(2015).
[43] LEE I G, KIM Y J, PAR Y B et al. Design of X-band reconfigurable frequency selective surface with high iso-lation[J]. Ieice Electronics Express, 13, 1-8(2016).
[45] ZHAO Y, FU J, LIANG Z et al. Reconfigurable active frequency selective surface for ultra‐wideband applications[J]. International Journal of RF and Microwave Computer‐Aided Engineering, 30, 1-6(2020).
[46] [46] GIANVITTIO J P, ZENGDEJAS J, RAHMATSAMII Y , et al. MEMS enabled reconfigurable frequency ive surfaces: design, simulation, fabrication, measurement[C]IEEE Antennas & Propagation Society International Symposium. San Antonio, Texas,USA: IEEE, 2002, 2: 404–407.
[48] SCHOENLINNER B, ABBASPOUR-TAMIJANI A, KEMPEL C et al. Switchable low-loss RF MEMS Ka-band frequency-selective surface[J]. IEEE Transactions on Microwave Theory & Techniques, 52, 2474-2481(2004).
[51] ZHANG W X Z, SONG H X. Analysis of mechanically tunable frequency selective surfaces[J]. Journal of Systems Engineering & Electronics, 8, 7-16(1997).
[54] AZEMI S N, GHORBANI K, ROWE W S T. A reconfigurable FSS using a spring resonator element[J]. IEEE Antennas & Wireless Propagation Letters, 12, 781-784(2013).
[56] BOSSARD J A, LIANG X, LI L et al. Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals[J]. IEEE Transactions on Antennas & Propagation, 56, 1308-1320(2008).
[57] [57] EBRAHIMI A, YAGHMAEE P, WITHAYACHUMNANKUL W, et al. Interlayer tuning of Xb frequencyive surface using liquid crystal[C]IEEE 2013 AsiaPacific Microwave Conference (APMC 2013). Seoul, Repblic of Kea: IEEE, 2013: 1118–1120.
[58] [58] LI R, HU H, TIAN J, et al. Reconfigurable frequency ive surface based on liquid crystal[C]IEEE 2021 International Conference on Microwave Millimeter Wave Technology (ICMMT). Beijing, China: IEEE, 2021: 1–3.
[60] [60] ZHANG J H, LIN M T, DING Z F et al. Energy ive surface with powerdependent transmission coefficient f highpower microwave protection in waveguide[J]. IEEE Transactions on Antennas Propagation, 2019: 19.
[62] YANG G, LI Y, WU Q et al. Design of L-band energy-selective surface with circular ring gap[J]. Applied Computational Electromagnetics Society Journal, 35, 551-555(2020).
[71] [71] WANG D D, CHEN L, DENG L Y. Experimental comparison research on the perfmance of RF frontend EMP protection modules based on GDT SPG[C]IEEE 2018 7th AsiaPacific Conference on Antennas Propagation (APCAP). Auckl, New Zeal: IEEE, 2018: 264–268.
[75] [75] WANG D D, CHEN L, YANG K, et al. Experimental study of the protection effect of the shtwave RF frontend lightning electromagic pulse protection module based on switchtype voltage limiting type protective elements[C]IEEE 2018 12th International Symposium on Antennas, Propagation EM They (ISAPE). Hangzhou, China: IEEE, 2018: 1–5.
[85] [85] WU Z, LIN M, LIU J, et al. , Waveguide energyionfilter switch array [J] IEEE Access, 2019. 7: 6768667694.
[86] HUANG R, LIU J, LIU C et al. Self-switchable broadband waveguide protector against high power micro-wave[J]. IEEE Transactions on Electromagnetic Compatibility, 65, 355-359(2022).
[88] [88] KRUEGER P, ELLIOTT L, MURPHY C, et al. Method apparatus to protect an ether wk by suppression of transient voltage pulses using a plasma limiter: U. S. patent application 11474, 241[P]. 20070118.
[89] [89] MANKOWSKI J, PAP R, ELLIOTT L, et al. Method apparatus f a subnanosecond response time transient protection device: U. S. patent application 10459, 497[P]. 20041216.
[90] [90] ZONG Z, QIU Y. Study on rapid response acteristics of plasma limiter under high power microwave[C]Proceedings of the Seventh Asia International Symposium on Mechatronics: Volume I. Singape: Springer Singape, 2020: 95–106.
[91] COAKER B. Radar receiver protection technology[J]. Microwave Journal, 50, 8(2007).
Get Citation
Copy Citation Text
Shengquan ZHENG, Jingbiao CAI, Bing RUAN, Dongdong WANG, Wenzhuo WANG, Xujing HUANG. A review of strong electromagnetic environment protection technology for ship equipment[J]. Chinese Journal of Ship Research, 2023, 18(4): 1
Category:
Received: Jun. 2, 2023
Accepted: --
Published Online: Mar. 20, 2025
The Author Email: