Chinese Journal of Lasers, Volume. 48, Issue 5, 0501008(2021)

Recent Progress of Optical-Superlattice-Based Mid-Infrared Optical Parametric Oscillators

Hongkun Nie1, Jian Ning2, Baitao Zhang1、*, Kejian Yang1, Gang Zhao2, Xinjie Lü2, and Jingliang He1
Author Affiliations
  • 1State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, Shandong University, Jinan, Shandong 250100, China
  • 2National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
  • show less
    Figures & Tables(12)
    Schematic of optical parametric effects. (a) OPG and OPA; (b) OPO
    Process of QPM. (a) Intensity of nonlinear frequency conversion light in optical superlattices versus interaction length; (b) schematic of polarization direction of lithium niobate domain after periodic polarization in external electric field
    Main progress and performance parameters of 2-5 µm CW mid-infrared OPOs based on optical superlattice crystals
    2--5 μm CW mid-infrared OPOs based on optical superlattice crystals. (a) LD-pumped Nd∶ YVO4 intracavity single resonant three-mirror L-type composite cavity OPO structure and (b) corresponding output power curves of 3.66 μm idle light [57]; (c) LD-pumped Nd∶ YVO4 intracavity single resonator two-mirror linear composite cavity OPO structure and (d) output power and wavelength tuning curves of idle light [60]; (e) VECSEL-pumped fan-shaped PPLN intracavity OPO structure and (f) output power curves of idle light [64]; (g) structural diagram of narrow-linewidth PPLN-OPO pumped by DFB fiber laser and (h) CO2 absorption spectral lines measured by it [71]
    2--5 μm narrow-linewidth CW OPO based on multi-period PPLN[28]. (a) Experimental setup of OPO; (b) experimentally obtained output spectrum of idle light with longest wavelength; (c) wavelength tuning curves of narrow-linewidth CW OPO; (d) output power and photon conversion efficiency of idle light versus wavelength at pump power of 27.5 W; (e) linewidth of signal light measured by delay self-zero difference method; (f) beam quality of 3497.1 nm idle light at output power of 3.3 W
    Main progress and performance parameters of 2-5 µm ns mid-infrared OPOs based on optical superlattice crystals
    2--5 μm ns mid-infrared OPOs based on optical superlattice crystals. (a) Experimental setup of four-wavelength near-mid-infrared OPO and (b) corresponding wavelength tuning range of double-period OPO[107]; (c) experimental setup of high power OPO+OPA and (d) corresponding output power curve of OPA[108]
    High power 2.1 μm degenerate point ns OPO based on 2 mm thick PPLN[28]. (a) Experimental setup of OPO; (b) output power curves of OPO; (c) output wavelength of OPO versus temperature and pump power; (d) beam quality at highest output power; (e) test result of power stability @5 h at maximum output power
    2--5 μm wide-tuning ns OPO based on multi-period PPLN[28]. (a) Experimental setup of OPO; (b) wavelength-tuning curves of OPO; (c) output power of idle light versus wavelength at pump power of 18 W
    2--5 μm ps mid-infrared OPO based on optical superlattice crystal. (a) Experimental setup of synchronously-pumped OPO and (b) corresponding output power curves[129]; (c) experimental setup of synchronously-pumped OPO based on standing-wave cavity and (d) corresponding output power curves[134]
    Main progress and performance parameters of 2-5 µm ps mid-infrared OPOs based on optical superlattice crystals
    • Table 1. Characteristics of commonly mid-infrared OPO nonlinear optical materials

      View table

      Table 1. Characteristics of commonly mid-infrared OPO nonlinear optical materials

      Parametric crystalTransmittancerange /μmEffective nonlinearcoefficient /(pm·V-1)Thermal conductivity /[W·(k·m)-1]Damage threshold @pulsewidth of 10 ns /(GW·cm-2)Ref.
      KTiOPO4(KTP)0.35--4.5016.90.40.5@wavelength of1.06 μm[31]
      KTiOAsO4(KTA)0.35--5.303.2-1.2@wavelength of1.06 μm[32-33]
      ZnGeP2(ZGP)0.7--12.075.036.00.1@wavelength of2.1 μm[34-36]
      AgGaS20.5--13.013.41.40.04@wavelength of1.06 μm[37, 39]
      AgGaSe20.71--12.043.01.00.04@wavelength of1.06 μm[38-39]
      BaGa4S7(BGS)0.35--13.712.6-1.2@wavelength of1.06 μm[40-41]
      BaGa4Se7(BGSe)0.47--1824.30.740.1@wavelength of1.06 μm and 0.12@wavelength of 2.1 μm[42-43]
      LiInS2(LIS)0.35--12.515.88.51@wavelength of1.06 μm and 6@wavelength of 5 μm[43-44]
      LiInSe2(LISe)0.47--13.71650.04@wavelength of1.06 μm[45-46]
      LiGaSe2(LGS)0.32--11.65.86--80.24@wavelength of1.06 μm[47]
      AgGaGeS0.5--11.5150.40.05@wavelength of1.06 μm[47]
      PPLN0.33--5.51650.3@wavelength of1.06 μm[28,30]
      PPLT0.28--4.59-0.58@wavelength of1.06 μm[28,30]
      PPKTP0.35--4.59.8-1@wavelength of1.06 μm[48]
    Tools

    Get Citation

    Copy Citation Text

    Hongkun Nie, Jian Ning, Baitao Zhang, Kejian Yang, Gang Zhao, Xinjie Lü, Jingliang He. Recent Progress of Optical-Superlattice-Based Mid-Infrared Optical Parametric Oscillators[J]. Chinese Journal of Lasers, 2021, 48(5): 0501008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Nov. 3, 2020

    Accepted: Dec. 21, 2020

    Published Online: Mar. 16, 2021

    The Author Email: Baitao Zhang (btzhang@sdu.edu.cn)

    DOI:10.3788/CJL202148.0501008

    Topics