Journal of the Chinese Ceramic Society, Volume. 52, Issue 5, 1722(2024)

Development on Fabrication Methods of Zirconia-based Electrolyte Thin Films for Solid Oxide Fuel Cells

XU Erxiang1, LI Xiaoyan2、*, CHEN Songxuan2, DU Guoshan2, and FU Yunfeng2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(115)

    [1] [1] MAHMUD L S, MUCHTAR A, SOMALU M R. Challenges in fabricating planar solid oxide fuel cells: a review[J]. Renew Sustain Energy Rev, 2017, 72: 105-116.

    [2] [2] CHOUDHURY A, CHANDRA H, ARORA A. Application of solid oxide fuel cell technology for power generation—a review[J]. Renew Sustain Energy Rev, 2013, 20: 430-442.

    [3] [3] VINCHHI P, KHANDLA M, CHAUDHARY K, et al. Recent advances on electrolyte materials for SOFC: a review[J]. Inorg Chem Commun, 2023, 152: 110724.

    [4] [4] ZHANG J, RICOTE S, HENDRIKSEN P V, et al. Advanced materials for thin-film solid oxide fuel cells: recent progress and challenges in boosting the device performance at low temperatures[J]. Adv Funct Materi, 2022, 32(22): 2111205.

    [5] [5] STEELE B C, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861): 345-352.

    [6] [6] SINGH M, ZAPPA D, COMINI E. Solid oxide fuel cell: decade of progress, future perspectives and challenges[J]. Int J Hydrog Energy, 2021, 46(54): 27643-27674.

    [8] [8] DEEPI A S, DHARANI PRIYA S, SAMSON NESARAJ A, et al. Component fabrication techniques for solid oxide fuel cell (SOFC)-A comprehensive review and future prospects[J]. Int J Green Energy, 2022, 19(14): 1600-1612.

    [9] [9] CHELMEHSARA M E, MAHMOUDIMEHR J. Techno-economic comparison of anode-supported, cathode-supported, and electrolyte-supported SOFCs[J]. Int J Hydrog Energy, 2018, 43(32): 15521-15530.

    [10] [10] UDOMSILP D, LENSER C, GUILLON O, et al. Performance benchmark of planar solid oxide cells based on material development and designs[J]. Energy Tech, 2021, 9(4): 2001062.

    [11] [11] KUTERBEKOV K A, NIKONOV A V, BEKMYRZA K Z, et al. Classification of solid oxide fuel cells[J]. Nanomaterials, 2022, 12(7): 1059.

    [12] [12] MAHATO N, BANERJEE A, GUPTA A, et al. Progress in material selection for solid oxide fuel cell technology: a review[J]. Prog Mater Sci, 2015, 72: 141-337.

    [13] [13] MAITI T K, MAJHI J, MAITI S K, et al. Zirconia- and ceria-based electrolytes for fuel cell applications: critical advancements toward sustainable and clean energy production[J]. Environ Sci Pollut Res Int, 2022, 29(43): 64489-64512.

    [14] [14] ZAKARIA Z, ABU HASSAN S H, SHAARI N, et al. A review on recent status and challenges of yttria stabilized zirconia modification to lowering the temperature of solid oxide fuel cells operation[J]. Int J Energy Res, 2020, 44(2): 631-650.

    [15] [15] XU Hong, ZHAO Na, ZHANG He, et al. Chin J Rare Met, 2017, 41(4): 437-444.

    [16] [16] DWIVEDI S. Solid oxide fuel cell: materials for anode, cathode and electrolyte[J]. Int J Hydrog Energy, 2020, 45(44): 23988-24013.

    [17] [17] LIU T, ZHANG X F, WANG X N, et al. A review of zirconia-based solid electrolytes[J]. Ionics, 2016, 22(12): 2249-2262.

    [18] [18] MOLENDA J, ?WIERCZEK K, ZAJ?C W. Functional materials for the IT-SOFC[J]. J Power Sources, 2007, 173(2): 657-670.

    [19] [19] ZAKARIA Z, KAMARUDIN S K. Advanced modification of scandia-stabilized zirconia electrolytes for solid oxide fuel cells application—a review[J]. Int J Energy Res, 2021, 45(4): 4871-4887.

    [20] [20] YEH T H, LIN R D, CHERNG J S. Significantly enhanced ionic conductivity of yttria-stabilized zirconia polycrystalline nano-film by thermal annealing[J]. Thin Solid Films, 2013, 544: 148-151.

    [21] [21] GUO X, MAIER J. Grain boundary blocking effect in zirconia: a Schottky barrier analysis[J]. J Electrochem Soc, 2001, 148(3): E121.

    [22] [22] GUO X, WASER R. Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria[J]. Prog Mater Sci, 2006, 51(2): 151-210.

    [23] [23] KOSACKI I, SUZUKI T, PETROVSKY V, et al. Electrical conductivity of nanocrystalline ceria and zirconia thin films[J]. Solid State Ion, 2000, 136-137: 1225-1233.

    [24] [24] FEIGHERY A J, IRVINE J T S. Effect of alumina additions upon electrical properties of 8 mol.% yttria-stabilised zirconia[J]. Solid State Ion, 1999, 121(1-4): 209-216.

    [25] [25] GUO X, SIGLE W, FLEIG J, et al. Role of space charge in the grain boundary blocking effect in doped zirconia[J]. Solid State Ion, 2002, 154-155: 555-561.

    [27] [27] ZHIGACHEV A O, RODAEV V V, ZHIGACHEVA D V, et al. Doping of scandia-stabilized zirconia electrolytes for intermediate-temperature solid oxide fuel cell: a review[J]. Ceram Int, 2021, 47(23): 32490-32504.

    [28] [28] KOSACKI I, ROULEAU C M, BECHER P F, et al. Nanoscale effects on the ionic conductivity in highly textured YSZ thin films[J]. Solid State Ion, 2005, 176(13/14): 1319-1326.

    [29] [29] ATKINSON A. Solid oxide fuel cell electrolytes—factors influencing lifetime[M]//Solid Oxide Fuel Cell Lifetime and Reliability. Amsterdam: Elsevier, 2017: 19-35.

    [30] [30] GIBSON I R, DRANSFIELD G P, IRVINE J T S. Influence of yttria concentration upon electrical properties and susceptibility to ageing of yttria-stabilised zirconias[J]. J Eur Ceram Soc, 1998, 18(6): 661-667.

    [31] [31] TERNER M R, SCHULER J A, MAI A, et al. On the conductivity degradation and phase stability of solid oxide fuel cell (SOFC) zirconia electrolytes analysed via XRD[J]. Solid State Ion, 2014, 263: 180-189.

    [32] [32] BUTZ B, KRUSE P, ST?RMER H, et al. Correlation between microstructure and degradation in conductivity for cubic Y2O3-doped ZrO2[J]. Solid State Ion, 2006, 177(37/38): 3275-3284.

    [33] [33] PARK J H, BLUMENTHAL R N. Electronic transport in 8 mole percent ?Y2O3-ZrO2[J]. J Electrochem Soc, 1989, 136(10): 2867-2876.

    [34] [34] JABBARI M, BULATOVA R, TOK A I Y, et al. Ceramic tape casting: a review of current methods and trends with emphasis on rheological behaviour and flow analysis[J]. Mater Sci Eng B, 2016, 212: 39-61.

    [35] [35] WANG Wei, LIU Zhijun, ZHANG Yapeng, et al. J Chin Soc Rare Earths, 2019, 37(2): 232-240.

    [36] [36] LI P H, CHEN X Y, SUN Y F, et al. Fabrication of anode supported solid oxide electrolysis cell with the co-tape casting technique and study on co-electrolysis characteristics[J]. J Power Sources, 2023, 569: 232912.

    [37] [37] ZHOU J, ZHANG L, LIU C, et al. Aqueous tape casting technique for the fabrication of Sc0.1Ce0?01Zr0?89O2+Δ ceramic for electrolyte-supported solid oxide fuel cell[J]. Int J Hydrog Energy, 2019, 44(38): 21110-21114.

    [38] [38] DOS REIS ARAúJO M, ACCHAR W. Fabrication and characterization of nano-zirconia produced by aqueous-based tape casting[J]. Mater Today Proc, 2017, 4(11): 11506-11511.

    [39] [39] LEWIS J A. Colloidal processing of ceramics[J]. J Am Ceram Soc, 2004, 83(10): 2341-2359.

    [40] [40] LIU Dandan. Application in preparation of solid oxide fuel cells by slip-casting with aqueous slurry[D]. Guangzhou: South China University of Technology, 2014.

    [41] [41] CHEN Sheng. Study on the preparation of solid oxide fuel cells by an aqueous tape casting[D]. Baotou: Inner Mongolia University of Science & Technology, 2014.

    [42] [42] CHEN X, ZHANG H L, LI Y Y, et al. Fabrication and performance of anode-supported proton conducting solid oxide fuel cells based on BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte by multi-layer aqueous-based co-tape casting[J]. J Power Sources, 2021, 506: 229922.

    [43] [43] BA X W, LI J, PAN Y B, et al. Comparison of aqueous- and non-aqueous-based tape casting for preparing YAG transparent ceramics[J]. J Alloys Compd, 2013, 577: 228-231.

    [44] [44] TAN Kai, YAN Xiaomin, TIAN Fengyuan, et al. J Chin Ceram Soc, 2022, 50(6): 1661-1668.

    [45] [45] XUE Y J, HE C R, LIU M, et al. Effect of phase transformation of zirconia on the fracture behavior of electrolyte-supported solid oxide fuel cells[J]. Int J Hydrog Energy, 2019, 44(23): 12118-12126.

    [46] [46] WON B R, KIM Y H, JO S, et al. Highly flexible solid oxide fuel cells using phase-controlled electrolyte support[J]. J Eur Ceram Soc, 2022, 42(13): 5813-5819.

    [47] [47] ZHOU J, LIU Q, SUN Q, et al. A low cost large-area solid oxide cells fabrication technology based on aqueous co-tape casting and co-sintering[J]. Fuel Cells, 2014, 14(4): 667-670.

    [48] [48] ZHOU J, LIU Q L, ZHANG L, et al. Influence of pore former on electrochemical performance of fuel-electrode supported SOFCs manufactured by aqueous-based tape-casting[J]. Energy, 2016, 115: 149-154.

    [49] [49] PIROU S, TALIC B, BRODERSEN K, et al. Production of a monolithic fuel cell stack with high power density[J]. Nat Commun, 2022, 13(1): 1263.

    [50] [50] BAHARUDDIN N A, ABDUL RAHMAN N F, ABD RAHMAN H, et al. Fabrication of high-quality electrode films for solid oxide fuel cell by screen printing: a review on important processing parameters[J]. Int J Energy Res, 2020, 44(11): 8296-8313.

    [51] [51] SOMALU M R, MUCHTAR A, DAUD W R W, et al. Screen-printing inks for the fabrication of solid oxide fuel cell films: a review[J]. Renew Sustain Energy Rev, 2017, 75: 426-439.

    [52] [52] VON DOLLEN P, BARNETT S. A study of screen printed yttria-stabilized zirconia layers for solid oxide fuel cells[J]. J Am Ceram Soc, 2005, 88(12): 3361-3368.

    [53] [53] ZHANG Y H, HUANG X Q, LU Z, et al. A study of the process parameters for yttria-stabilized zirconia electrolyte films prepared by screen-printing[J]. J Power Sources, 2006, 160(2): 1065-1073.

    [54] [54] MENZLER N H, TIETZ F, UHLENBRUCK S, et al. Materials and manufacturing technologies for solid oxide fuel cells[J]. J Mater Sci, 2010, 45(12): 3109-3135.

    [55] [55] YE C C, BI S S, LIAO P F, et al. Rational design of NiO-8YSZ screen-printing slurry for high-performance large-area solid oxide cells[J]. J Phys Chem C, 2023, 127(14): 6629-6637.

    [56] [56] CHENG L Y, LYU Q Q, LI Z X, et al. Robust and reliable solid oxide fuel cells with modified thin film YSZ electrolyte[J]. Int J Appl Ceram Technol, 2023, 20(4): 2341-2349.

    [57] [57] WANG J M, Lü Z, CHEN K F, et al. Study of slurry spin coating technique parameters for the fabrication of anode-supported YSZ Films for SOFCs[J]. J Power Sources, 2007, 164(1): 17-23.

    [58] [58] WILL J, MITTERDORFER A, KLEINLOGEL C, et al. Fabrication of thin electrolytes for second-generation solid oxide fuel cells[J]. Solid State Ion, 2000, 131(1/2): 79-96.

    [59] [59] KIM H J, KIM M, NEOH K C, et al. Slurry spin coating of thin film yttria stabilized zirconia/gadolinia doped ceria bi-layer electrolytes for solid oxide fuel cells[J]. J Power Sources, 2016, 327: 401-407.

    [60] [60] LI J Y, FAN L J, HOU N J, et al. Solid oxide fuel cell with a spin-coated yttria stabilized zirconia/gadolinia doped ceria bi-layer electrolyte[J]. RSC Adv, 2022, 12(21): 13220-13227.

    [61] [61] BECKEL D, BIEBERLE-HüTTER A, HARVEY A, et al. Thin films for micro solid oxide fuel cells[J]. J Power Sources, 2007, 173(1): 325-345.

    [62] [62] HU S S, LI W Y, FINKLEA H, et al. A review of electrophoretic deposition of metal oxides and its application in solid oxide fuel cells[J]. Adv Colloid Interface Sci, 2020, 276: 102102.

    [63] [63] HOSOMI T, MATSUDA M, MIYAKE M. Electrophoretic deposition for fabrication of YSZ electrolyte film on non-conducting porous NiO-YSZ composite substrate for intermediate temperature SOFC[J]. J Eur Ceram Soc, 2007, 27(1): 173-178.

    [64] [64] MATSUDA M, HOSOMI T, MURATA K, et al. Fabrication of bilayered YSZ/SDC electrolyte film by electrophoretic deposition for reduced-temperature operating anode-supported SOFC[J]. J Power Sources, 2007, 165(1): 102-107.

    [65] [65] BESRA L, COMPSON C, LIU M L. Electrophoretic deposition on non-conducting substrates: the case of YSZ film on NiO-YSZ composite substrates for solid oxide fuel cell application[J]. J Power Sources, 2007, 173(1): 130-136.

    [66] [66] SALEHZADEH D, TORABI M, SADEGHIAN Z, et al. A multiscale-architecture solid oxide fuel cell fabricated by electrophoretic deposition technique[J]. J Alloys Compd, 2020, 830: 154654.

    [67] [67] CHEN Z W, LI Z Y, LI J J, et al. 3D printing of ceramics: a review[J]. J Eur Ceram Soc, 2019, 39(4): 661-687.

    [68] [68] ZHENG Lina, WANG Wenzhong, JIA Kaijie, et al. Energy Storage Sci Technol, 2021, 10(6): 1952-1962.

    [69] [69] ESPOSITO V, GADEA C, HJELM J, et al. Fabrication of thin yttria-stabilized-zirconia dense electrolyte layers by inkjet printing for high performing solid oxide fuel cells[J]. J Power Sources, 2015, 273: 89-95.

    [70] [70] TOMOV R I, KRAUZ M, JEWULSKI J, et al. Direct ceramic inkjet printing of yttria-stabilized zirconia electrolyte layers for anode-supported solid oxide fuel cells[J]. J Power Sources, 2010, 195(21): 7160-7167.

    [71] [71] ZHENG L N, XU R X, ZHANG J J, et al. Enhanced electrochemical performance by structural design of electrolyte surface combining 3D printing technology with multi-physical modelling[J]. Chem Eng J, 2023, 451: 139038.

    [72] [72] RUIZ-MORALES J C, TARANCóN A, CANALES-VáZQUEZ J, et al. Three dimensional printing of components and functional devices for energy and environmental applications[J]. Energy Environ Sci, 2017, 10(4): 846-859.

    [73] [73] TAI X Y, ZHAKEYEV A, WANG H, et al. Accelerating fuel cell development with additive manufacturing technologies: state of the art, opportunities and challenges[J]. Fuel Cells, 2019, 19(6): 636-650.

    [74] [74] LYU Y M, WANG F F, WANG D B, et al. Alternative preparation methods of thin films for solid oxide fuel cells: review[J]. Mater Technol, 2020, 35(4): 212-227.

    [75] [75] MA Q L, MA J J, ZHOU S, et al. A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte[J]. J Power Sources, 2007, 164(1): 86-89.

    [76] [76] XIN X S, Lü Z, HUANG X Q, et al. Solid oxide fuel cells with dense yttria-stabilized zirconia electrolyte membranes fabricated by a dry pressing process[J]. J Power Sources, 2006, 160(2): 1221-1224.

    [77] [77] LI Xiaoguang, DING Shuqiang, ZHUO Jinde, et al. Inorg Chem Ind, 2019, 51(1): 7-11.

    [78] [78] ATTIA S M, WANG J, WU G M, et al. Review on sol-gel derived coatings: process, techniques and optical applications[J]. J Mater Sci Technol, 2002, 18(3): 211-218.

    [79] [79] GERSTL M, NAVICKAS E, LEITGEB M, et al. The grain and grain boundary impedance of sol-gel prepared thin layers of yttria stabilized zirconia (YSZ)[J]. Solid State Ion, 2012, 225(5): 732-736.

    [80] [80] DUNN B, FARRINGTON G C, KATZ B. Sol-gel approaches for solid electrolytes and electrode materials[J]. Solid State Ion, 1994, 70-71: 3-10.

    [81] [81] KUEPER T W, VISCO S J, DE JONGHE L C. Thin-film ceramic electrolytes deposited on porous and non-porous substrates by sol-gel techniques[J]. Solid State Ion, 1992, 52(1-3): 251-259.

    [82] [82] FENG Xiao, ZHAO Xuexue, XING Yazhe. Surf Technol, 2019, 48(4): 10-17.

    [83] [83] HUI R, WANG Z W, KESLER O, et al. Thermal plasma spraying for SOFCs: applications, potential advantages, and challenges[J]. J Power Sources, 2007, 170(2): 308-323.

    [84] [84] TEJERO-MARTIN D, REZVANI RAD M, MCDONALD A, et al. Beyond traditional coatings: a review on thermal-sprayed functional and smart coatings[J]. J Therm Spray Technol, 2019, 28(4): 598-644.

    [85] [85] CODDET P, LIAO H L, CODDET C. A review on high power SOFC electrolyte layer manufacturing using thermal spray and physical vapour deposition technologies[J]. Adv Manuf, 2014, 2(3): 212-221.

    [86] [86] ZHANG C, LIAO H L, LI W Y, et al. Characterization of YSZ solid oxide fuel cells electrolyte deposited by atmospheric plasma spraying and low pressure plasma spraying[J]. J Therm Spray Technol, 2006, 15(4): 598-603.

    [87] [87] LANG M, HENNE R, SCHAPER S, et al. Development and characterization of vacuum plasma sprayed thin film solid oxide fuel cells[J]. J Therm Spray Technol, 2001, 10(4): 618-625.

    [88] [88] XIA W S, YANG Y Z, ZHANG H O, et al. Fabrication and electrochemical performance of solid oxide fuel cell components by atmospheric and suspension plasma spray[J]. Trans Nonferrous Met Soc China, 2009, 19(6): 1539-1544.

    [89] [89] PEREDNIS D, GAUCKLER L J. Solid oxide fuel cells with electrolytes prepared via spray pyrolysis[J]. Solid State Ion, 2004, 166(3/4): 229-239.

    [90] [90] NOMURA H, PAREKH S, SELMAN J R, et al. Fabrication of YSZ electrolyte using electrostatic spray deposition (ESD): I-a comprehensive parametric study[J]. J Appl Electrochem, 2005, 35(1): 61-67.

    [91] [91] KHOR K A, YU L G, CHAN S H, et al. Densification of plasma sprayed YSZ electrolytes by spark plasma sintering (SPS)[J]. J Eur Ceram Soc, 2003, 23(11): 1855-1863.

    [92] [92] LI C J, LI C X, NING X J. Performance of YSZ electrolyte layer deposited by atmospheric plasma spraying for cermet-supported tubular SOFC[J]. Vacuum, 2004, 73(3/4): 699-703.

    [93] [93] YANG Y, ZHANG Y X, YAN M F. A review on the preparation of thin-film YSZ electrolyte of SOFCs by magnetron sputtering technology[J]. Sep Purif Technol, 2022, 298: 121627.

    [94] [94] HUANG H, NAKAMURA M, SU P C, et al. High-performance ultrathin solid oxide fuel cells for low-temperature operation[J]. J Electrochem Soc, 2007, 154(1): B20.

    [95] [95] WANG H Q, JI W J, ZHANG L, et al. Preparation of YSZ films by magnetron sputtering for anode-supported SOFC[J]. Solid State Ion, 2011, 192(1): 413-418.

    [96] [96] NéDéLEC R, UHLENBRUCK S, SEBOLD D, et al. Dense yttria-stabilised zirconia electrolyte layers for SOFC by reactive magnetron sputtering[J]. J Power Sources, 2012, 205: 157-163.

    [97] [97] HONG S, YANG H, LIM Y, et al. Microstructure-controlled deposition of yttria-stabilized zirconia electrolyte for low temperature solid oxide fuel cell performance stability enhancement[J]. Thin Solid Films, 2016, 618: 207-212.

    [98] [98] NAGATA A, OKAYAMA H. Characterization of solid oxide fuel cell device having a three-layer film structure grown by RF magnetron sputtering[J]. Vacuum, 2002, 66(3/4): 523-529.

    [99] [99] LEE Y H, REN H W, WU E A, et al. All-sputtered, superior power density thin-film solid oxide fuel cells with a novel nanofibrous ceramic cathode[J]. Nano Lett, 2020, 20(5): 2943-2949.

    [100] [100] PEDERSON L R, SINGH P, ZHOU X D. Application of vacuum deposition methods to solid oxide fuel cells[J]. Vacuum, 2006, 80(10): 1066-1083.

    [101] [101] GARBAYO I, TARANCóN A, SANTISO J, et al. Electrical characterization of thermomechanically stable YSZ membranes for micro solid oxide fuel cells applications[J]. Solid State Ion, 2010, 181(5-7): 322-331.

    [102] [102] NOH H S, SON J W, LEE H, et al. Low temperature performance improvement of SOFC with thin film electrolyte and electrodes fabricated by pulsed laser deposition[J]. J Electrochem Soc, 2009, 156(12): B1484.

    [103] [103] HAIDER A J, ALAWSI T, HAIDER M J, et al. A comprehensive review on pulsed laser deposition technique to effective nanostructure production: trends and challenges[J]. Opt Quantum Electron, 2022, 54(8): 1-25.

    [104] [104] YANG D F, ZHANG X G, NIKUMB S, et al. Low temperature solid oxide fuel cells with pulsed laser deposited bi-layer electrolyte[J]. J Power Sources, 2007, 164(1): 182-188.

    [105] [105] QIAN J, ZHU Z W, DANG J J, et al. Improved performance of solid oxide fuel cell with pulsed laser deposited thin film ceria-zirconia bilayer electrolytes on modified anode substrate[J]. Electrochim Acta, 2013, 92: 243-247.

    [106] [106] DEVELOS-BAGARINAO K, YAMAGUCHI T, KISHIMOTO H. Elucidating the performance benefits enabled by YSZ/Ni-YSZ bilayer thin films in a porous anode-supported cell architecture[J]. Nanoscale, 2023, 15(27): 11569-11581.

    [107] [107] HERMAWAN E, LEE G S, KIM G S, et al. Densification of an YSZ electrolyte layer prepared by chemical/electrochemical vapor deposition for metal-supported solid oxide fuel cells[J]. Ceram Int, 2017, 43(13): 10450-10459.

    [108] [108] GELFOND N V, BOBRENOK O F, PREDTECHENSKY M R, et al. Chemical vapor deposition of electrolyte thin films based on yttria-stabilized zirconia[J]. Inorg Mater, 2009, 45(6): 659-665.

    [109] [109] CHOUR K W, CHEN J, XU R. Metal-organic vapor deposition of YSZ electrolyte layers for solid oxide fuel cell applications[J]. Thin Solid Films, 1997, 304(1/2): 106-112.

    [110] [110] SCHLUPP M V F, EVANS A, MARTYNCZUK J, et al. Micro-solid oxide fuel cell membranes prepared by aerosol-assisted chemical vapor deposition[J]. Adv Energy Mater, 2014, 4(5): 1301383.

    [111] [111] SCHLUPP M V F, PRESTAT M, MARTYNCZUK J, et al. Thin film growth of yttria stabilized zirconia by aerosol assisted chemical vapor deposition[J]. J Power Sources, 2012, 202: 47-55.

    [112] [112] DI GIUSEPPE G, SELMAN J R. Anode-supported planar solid oxide fuel cells by plasma-enhanced metalorganic chemical vapor deposition (PE-MOCVD) and electrostatic spray deposition (ESD): fabrication of dense thin layers of yttria-stabilized zirconia by PE-MOCVD[J]. J Mater Res, 2001, 16(10): 2983-2991.

    [113] [113] HONG S, BAE J, KOO B, et al. High-performance ultra-thin film solid oxide fuel cell using anodized-aluminum-oxide supporting structure[J]. Electrochem Commun, 2014, 47: 1-4.

    [114] [114] SAKAI T, KATO T, TANAKA Y, et al. Preparation of an yttria-stabilized zirconia electrolyte on a porous Ni-based cermet substrate by laser chemical vapor deposition[J]. Mater Today Commun, 2022, 33: 104169.

    [115] [115] MINESHIGE A, FUKUSHIMA K, TSUKADA K, et al. Preparation of dense electrolyte layer using dissociated oxygen electrochemical vapor deposition technique[J]. Solid State Ion, 2004, 175(1-4): 483-485.

    [116] [116] JI S, CHO G Y, YU W, et al. Plasma-enhanced atomic layer deposition of nanoscale yttria-stabilized zirconia electrolyte for solid oxide fuel cells with porous substrate[J]. ACS Appl Mater Interfaces, 2015, 7(5): 2998-3002.

    [117] [117] MENG G, SONG H, XIA C, et al. Novel CVD techniques for micro- and IT-SOFC fabrication[J]. Fuel Cells, 2004, 4(1/2): 48-55.

    Tools

    Get Citation

    Copy Citation Text

    XU Erxiang, LI Xiaoyan, CHEN Songxuan, DU Guoshan, FU Yunfeng. Development on Fabrication Methods of Zirconia-based Electrolyte Thin Films for Solid Oxide Fuel Cells[J]. Journal of the Chinese Ceramic Society, 2024, 52(5): 1722

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 25, 2023

    Accepted: --

    Published Online: Aug. 20, 2024

    The Author Email: LI Xiaoyan (lixiaoyan@enfi.com.cn)

    DOI:10.14062/j.issn.0454-5648.20230636

    Topics