Acta Optica Sinica, Volume. 44, Issue 2, 0222002(2024)

Design Method of Flexible Support and Lattice Structure for Long Strip Mirror

Pengpeng Liu*, Jun Wu, Junlei Chang, Shoucheng Pang, Baocheng Zou, and Zhuwei Zhang
Author Affiliations
  • Beijing Key Laboratory of Advanced Optical Remote Sensing Technology, Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China
  • show less
    Figures & Tables(19)
    Parametric model of mirror
    Iterative history curve of optimal objective
    Mirror geometry model and first order free mode
    Schematic diagram of flexure hinge structure and center installation
    Model of mirror components
    Analysis results of influence of flexure hinge mounting angle. (a) Constrained model analysis; surface shape analysis of (b) gravity load; (c) temperature load; (d) forced displacement; (e) comprehensive factor
    Analysis results of influence of axial position of flexure hinge installation. (a) Constrained model analysis; (b) surface shape analysis of gravity, temperature, and forced displacement; (c) surface shape analysis of comprehensive factor
    Dimension parameters of flexible hinge with biaxial arc incision
    Cell configuration of BCC
    Lattice filling and point cloud generation
    Grid reconstruction of point cloud triangulation
    Simulation model of backplane skin lattice
    Finite element model of mirror components
    • Table 1. Parameters of materials for tertiary mirror components

      View table

      Table 1. Parameters of materials for tertiary mirror components

      MaterialDensity /(kg.m-3Elastic modulus /GPaPoisson ratioLinear expansion coefficient /(10-6-1
      ULE221067.60.170.03
      Invar81801450.250.05
      TC444501100.349.1
      2216 epoxy adhesive10000.6890.43102
    • Table 2. Mass distribution of mirror components

      View table

      Table 2. Mass distribution of mirror components

      PartMass distribution /kg
      Reflector≤4.5
      Back support structure≤0.5
      Backplate support structure≤2
    • Table 3. Structure parameters of tertiary mirror

      View table

      Table 3. Structure parameters of tertiary mirror

      CaliberPanel thicknessBase plate thicknessGrid plate thicknessGrid plate spacingOuter ring thickness
      540×180543445
    • Table 4. Geometric parameters of flexible hinge

      View table

      Table 4. Geometric parameters of flexible hinge

      r /mmt /mmb /mmA /(°)d /mmL /mmh /mm
      123651250
    • Table 5. Structure parameters of backplane support

      View table

      Table 5. Structure parameters of backplane support

      RaT
      0.864.5
    • Table 6. Simulation results of mirror components

      View table

      Table 6. Simulation results of mirror components

      First order fundamental frequency20 g overload in X direction20 g overload in Y direction20 g overload in Z direction
      237.3 Hz>120 HzMaximum stress:96.4 MPaSafety factor:9.1>1Maximum stress:128.4 MPaSafety factor:6.8>1Maximum stress:217.5 MPaSafety factor:4.0>1
      Surface error under gravity of assembly directionUniform temperature rise of 2 ℃Forced displacement of installation point 0.01 mm
      PV:0.021λRMS:0.003λ(1.727 nm)PV:0.046λRMS:0.006λ (3.505 nm)PV:0.019λRMS:0.004λ (2.343 nm)
      RMS of surface shape error0.018λ(11.4 nm)<λ/50
      Rigid body displacement under gravity of assembly direction0.007 mm<0.01 mm
    Tools

    Get Citation

    Copy Citation Text

    Pengpeng Liu, Jun Wu, Junlei Chang, Shoucheng Pang, Baocheng Zou, Zhuwei Zhang. Design Method of Flexible Support and Lattice Structure for Long Strip Mirror[J]. Acta Optica Sinica, 2024, 44(2): 0222002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Aug. 4, 2023

    Accepted: Sep. 11, 2023

    Published Online: Jan. 11, 2024

    The Author Email: Liu Pengpeng (807666208@qq.com)

    DOI:10.3788/AOS231368

    Topics