Journal of Terahertz Science and Electronic Information Technology , Volume. 23, Issue 6, 631(2025)
A distributed interference decision algorithm based on reinforcement learning
[2] [2] BAYRAM S, VANLI N D, DULEK B, et al. Optimum power allocation for average power constrained jammers in the presence of non-Gaussian noise[J]. IEEE Communications Letters, 2012, 16(8): 1153-1156. DOI: 10.1109/LCOMM.2012.052112.120098.
[3] [3] XU Chao, SHENG Min, WANG Xijun, et al. Distributed subchannel allocation for interference mitigation in OFDMA femtocells: a utility-based learning approach[J]. IEEE Transactions on Vehicular Technology, 2015, 64(6): 2463-2475. DOI: 10.1109/TVT.2014.2344434.
[4] [4] GOMADAM K, CADAMBE V R, JAFAR S A. Approaching the capacity of wireless networks through distributed interference alignment[C]//2008 IEEE Global Telecommunications Conference. New Orleans, LA, USA: IEEE, 2008: 1-6. DOI: 10.1109/GLOCOM.2008.ECP.817.
[5] [5] AMURU S, BUEHRER R M. Optimal jamming using delayed learning[C]//2014 IEEE Military Communications Conference. Baltimore, MD, USA: IEEE, 2014: 1528-1533. DOI: 10.1109/MILCOM.2014.252.
[6] [6] AMURU S, BUEHRER R M, VAN-DER-SCHAAR M. Blind network interdiction strategies: a learning approach[J]. IEEE Transactions on Cognitive Communications and Networking, 2015, 1(4): 435-449. DOI: 10.1109/TCCN.2016.2542078.
[7] [7] AMURU S, TEKIN C, DER-SCHAAR M V, et al. Jamming bandits: a novel learning method for optimal jamming[J]. IEEE Transactions on Wireless Communications, 2016, 15(4): 2792-2808. DOI: 10.1109/TWC.2015.2510643.
[8] [8] ZHUANSUN Shaoshuai, YANG Jun′an, LIU Hui, et al. A novel jamming strategy-greedy bandit[C]//2017 IEEE the 9th International Conference on Communication Software and Networks (ICCSN). Guangzhou, China: IEEE, 2017: 1142-1146. DOI: 10.1109/ICCSN.2017.8230289.
[11] [11] ZHAO N, LIANG Y C, NIYATO D, et al. Deep reinforcement learning for user association and resource allocation in heterogeneous cellular networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5141-5152. DOI: 10.1109/TWC.2019.2933417.
[12] [12] ZHUANSUN Shaoshuai, YANG Jun'an, LIU Hui. An algorithm for jamming strategy using OMP and MAB[J]. EURASIP Journal on Wireless Communications and Networking, 2019(1): 85. DOI: 10.1186/s13638-019-1414-4.
[13] [13] GUO Delin, TANG Lan, ZHANG Xinggan, et al. Joint optimization of handover control and power allocation based on multi-agent deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 13124-13138. DOI: 10.1109/TVT.2020.3020400.
[14] [14] RAO Ning, XU Hua, SONG Bailin, et al. Soft actor-critic deep reinforcement learning based interference resource allocation[C]//2021 the 7th International Conference on Computing and Artificial Intelligence. New York: Association for Computing Machinery, 2021: 392-398. DOI: 10.1145/3467707.3467766.
[17] [17] FOERSTER J N, FARQUHAR G, AFOURAS T, et al. Counterfactual multi-agent policy gradients[C]//Proceedings of the 32th Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. New Orleans, Louisiana, USA: AAAI Press, 2018: 363. DOI: 10.5555/3504035.3504398.
[18] [18] RASHID T, SAMVELYAN M, DE-WITT C S, et al. QMIX: monotonic value function factorisation for deep multi-agent reinforcement learning[C]//Proceedings of the 35th International Conference on Machine Learning. Stockholm, Sweden: PMLR, 2018: 80.
Get Citation
Copy Citation Text
AI Jiajun, LIU Qin, LI Guoqing, HOU Changbo. A distributed interference decision algorithm based on reinforcement learning[J]. Journal of Terahertz Science and Electronic Information Technology , 2025, 23(6): 631
Category:
Received: Jan. 29, 2024
Accepted: Jul. 30, 2025
Published Online: Jul. 30, 2025
The Author Email: